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ABSTRACT 

The flow behavior of xanthan in porous media has 
been investigated experimentally, and also theoreti­
cally using effective medium theory. In the experi­
mental portion of this study, the rheology of a com­
mercially-available xanthan broth was characterized 
in porous media and viscometers and compared for a 
wide range of polymer concentrations (300 to 1600 
ppm), effective brine permeabilities (40 to 800 md), 
residual oil saturations (0 to 29%), temperatures 
(25° and 80°C), and rock lithologies (sandstones and 
carbonates). An apparent shear rate equation having 
no adjustable parameters was developed and proved to 
be effective in relating the flow behavior of a given 
polymer solution in porous media at one set of condi­
tions to the behavior at all other porous media con­
ditions tested as well as to the rheology in a vis­
cometer. Although the shear rate dependence on flow 
velocity (first order) and effective permeability 
(negative one-half order) agrees with that predicted 
by traditional capillary bundle model approaches, the 
value of the experimentally determined constant coef­
ficient is larger than those predicted by the models. 

The basis for the shear rate equation employed 
above has been studied theoretically with the assump­
tion that the xanthan solution rheologies approxi­
mately follow the power-law relation. The apparent 
viscosity for a power-law fluid flowing in a porous 
medium is derived employing the effective medium ap­
proximation of percolation theory. In this approach, 
a porous medium is modeled as a network of capillary 
tubes, in which the radii of tubes are randomly dis­
tributed using a prescribed probability distribution. 
The apparent viscosity expression obtained is similar 
to that from the capillary bundle model, but the co­
efficient values are different, as observed experi­
mentally. This difference is a consequence of the 
connectivity of flow channels and their variable 
cross-section. Due to its shear-thinning nature, a 

References and illustrations at end of paper. 

power-law fluid flows mainly through the wide chan­
nels of porous media, and largely bypasses small­
scale pore channels of the porous body. The capil­
lary bundle model cannot describe this tendency of a 
shear-thinning fluid. 

I. INTRODUCTION 

Process models developed to predict production 
characteristics of enhanced oil recovery projects 
using polymers for mobility control require informa­
tion about the rheological behavior of the polymer 
solution in porous media. One method to obtain this 
information involves performing time-consuming core­
flood studies using the polymer solution and reser­
voir core material at each specific-reservoir condi­
tion of interest, such as permeability, porosity, and 
fluid saturations. Development of an equation that 
can be used to predict the flow behavior in porous 
media from easy-to-obtain viscometer data and/or ex­
tend the results from one coreflood to other condi­
t_ions is highly desirable. 

An equation relating rheology in viscometers to 
flow behavior in porous media is most suitable for 
pseudoplastic ("shear- thinning") fluids. A correla­
tion is· not needed for Newtonian. fluids since the 
viscosity is independent of shear rate, while the 
viscoelastic behavior exhibited by many synthetic 
polymers is not observed in conventional viscometers. 
Xanthan biopolymer is one excellent candidate for 
such a correlation because it is almost purely 
pseudoplastic ("shear thinning") with negligible 
elastic effects. Interest in the use of this polymer 
for oil recovery operations has been high due to 
favorable properties which include: (1) good injec­
tivity resulting from pseudoplasticity, (2) relative 
insensitivity of viscosity to salinity, and (3) ex­
cellent resistance to shear degradation over the 
shear rate range of interest in typical oilfield 
applications. 
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The flow behavior of xanthan solutions in both 
viscometers and consolidated porous media has been 
previously studied by other investigators including 
Teeuw and Hesselink, 1 Willhite and Uhl, 2 and 
Chauveteau 3 • In these studies, the flow in porous 
media was compared to viscometer data by calculating 
apparent viscosities from Darcy's law and converting 
flow rates into "ef;fective" shear rates using the 
following equation: 

'Yeff = C (3~:1) J~ [1] 

In this equation, which is derived from the capillary 
bundle model for flow of non-Newtonian fluids, u is 
the Darcy velocity, k is permeability, and tP is 
porosity. The value of n is related to the local 
slope of the log-log plot of viscosity vs. shear rate 
(or velocity) at the shear rate (velocity) of 
interest. The theoretical value of C depends on the 
approach taken and the values used to account for the 
tortuosity of the porous medium. Detailed discus­
sions of the different derivations can be found in 
Refs. 1 and 4. 

Teeuw and Hesselink1 compared the flow behavior 
of xanthan solutions in the power-law regime in Bent­
heim sandstone and a viscometer. They reported that 
the power-law exponents in the viscometer and porous 
media were essentially equal within experimental 
error. However, the apparent shear rates in porous 
media were underestimated when the values of C de­
rived from several different approaches of capillary 
bundle theory were used. It is not apparent within 
experimental error whether a single value of C can 
align their porous media shear rates with those of 
the viscometer for all solutions and permeabilities 
tested. 

In contrast to Teeuw and Hesselink' s results, 
Willhite and coworkers2 • 5 reported that the measured 
power-law exponents for flow of xanthan solutions in 
Berea sandstone cores and Ottawa sandpacks were lower 
than the values obtained in a viscometer. Thus, 
empirical equations had to be developed to relate the 
flow of each solution in porous media to viscometer 
data. In flow tests of dilute xanthan solutions in 
3.3 to 256 md Fontainbleau sandstones, Chauveteau3 • 6 

recently postulated that hydrodynamic exclusion of· 
xanthan molecules from the vicinity of pore walls was 
responsible for the lower apparent viscosities he ob­
served in porous media relative to viscometer values 
in the first Newtonian regime. 

Based on the results of these previous studies, 
the viability of predicting the flow behavior in 
porous media is uncertain. 

The results obtained in the present study of 
xanthan solution flow behavior in consolidated porous 
m~dia and viscometers demonstrate that an equation 
similar to eq. [ 1] with a single value of C deter­
mined from the study can be used to relate the flow 
behavior in porous media having different permeabili­
ties (40 to 800 md), oil saturations (zero and re­
sidual oil saturation), and lithologies (sandstones 
and carbonates). In addition, the flow of solutions 
prepared from the xanthan broth tested in this study 
can be predicted from viscometer data obtained for 
the polymer concentrations (300 to 1600 ppm) and tem­
peratures (25 and 80°C) studied. The experimental 
results are presented in Section II. 
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In view of the simplistic nature of the capil­
lary bundle model in representing porous media, an 
intriguing question to ask is why the equation could 
so successfully correlate the apparent viscosity of 
xanthan solutions in porous media.· We show in Sec­
tion III that, even when a more realistic model of 
porous media with a network of capillary tubes is 
employed, the functional form of eq. [1] is approxi­
mately correct; and that the connectivity of flow 
channels and their variable cross-section could ex­
plain why the value of C is higher than the values 
predicted from the capillary bundle model approaches. 
Specifically, a model of a porous medium, in which 
capillary tubes of varying radii are interconnected, 
is employed and the flow of a power-law fluid in such 
a network is considered. The apparent viscos.ity ex­
pression is then derived by applying the so-called 
effective medium theory. In particular, the apparent 
viscosity of polymer is considered in a network hav­
ing a bimodal distribution of tube radii, with 
examples of two simplest cases: (i) a bundle of un­
connected capillary tubes, with each tube having 
stepwise changes in radius along its length, causing 
a series of constrictions and expansions; and (ii) a 
network of capillary tubes of a uniform radius, in 
which a certain fraction of the connections are 
blocked randomly, thus creating interconnected, tor­
tuous passages. Conclusions are given in Section IV. 

II. EXPERIMENTAL INVESTIGATION 

II.l. PROCEDURES 

The flow behavior of 1200 ppm xanthan solution 
was investigated in Berea sandstone and carbonate 
cores at 25°C both in the presence and absence of re­
sidual oil. The effective permeabilities ranged from 
40 to 800 md. The rheologies of 300, 600, and 1600 
ppm xanthan solutions were also studied in nominal 
800 md Berea sandstone. Limited studies were also 
conducted at 80°C. 

Polymer solutions were prepared by diluting a 
commercially available xanthan broth with filtered 
(0.22 micron filter) synthetic 3.3% brine (3% NaCl, 
0.3% CaCl2). The dilute solutions were mixed with a 
homogenizer for 3 min/1 at a variac setting of 120V. 
The solutions were typically filtered through a 
Millipore AP-15 prefilter, although in some cases the 
more extensive filtration technique recommended by 
Chauveteau and Kohler7 was used. Formaldehyde was 
added to the solutions tested at 25°C. A vacuum pump 
was used to degas the solutions prior to the vis­
cometer and coreflood experiments. An oxygen scaven­
ger, Na2S204, was added to the degassed solution 
tested at 80°C to prevent loss of viscosity due to 
thermal-oxidative degradation. Polymer concentra­
tions were determined by high-performance liquid 
chromatography (HPLC) analysis. 

Viscosities were measured at 25°C with a Con­
traves LS-30 viscometer. A capillary viscometer was 
used under anaerobic conditions at 80°C. Corefloods 
were conducted with Berea sandstone and carbonate 
cores. The cores were initially evacuated and then 
saturated with degassed brine. For some cores, a re­
sidual oil saturation was established by displacing 
the brine with dodecane and subsequently waterflood­
ing to residual oil. The waterflood to displace oil 
was conducted at pressure gradients at least two 
times higher than the maximum gradient established 
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during the polymer experiments. Brine permeabilities 
were determined at several flow rates. 

During both brine and polymer injection, pres­
sure drops were measured across several core segments 
using diaphragm type pressure transducers. The 
excellent agreement of pressure drop in all core seg­
ments indicated that anomalous behavior such as en­
trance or exit effects were insignificant. Apparent 
viscosities were determined at each velocity using 
Darcy' s law: 

kLlP 
J..'app = uL 

II.2. VISCOSITY RESULTS 

[2] 

The viscometer rheograms for the 300 to 1600 ppm 
xanthan solutions are presented in Fig. 1. Over the 
range of shear rates investigated, the solutions ex­
hibited Newtonian behavior at very low shear rates 
and power-law pseudoplastic behavior at moderate-to­
high shear rates. At shear rates higher than those 
shown in Fig. 1, the solutions would exhibit a second 
Newtonian regime. Thus, over the entire shear rate 
range, the viscometer rheology can adequately be fit 
with a Carreau expression2 5 : 

n-1 
-2-

[3] 

where J..'o represents the Newtonian viscosity at zero 
shear rate, J..'oo represents the Newtonian viscosity at 
infinite shear rate, K represents the consistency 
index, and n represents the power-law exponent. 

At moderate to high shear rates for J..&o>>J..&oo, 
eq. [3] reduces to the power-law expression: 

J..' = K ~n-1 [4] 

Values for J..'o, K, and n, determined from the 
viscometer rheograms, are reported in Table I for 
each concentration. The value of J..'oo is assumed to be 
equal to the brine viscosity value of 1.0 cp for all 
concentrations. 

II.3. POROUS MEDIA RESULTS 

II.3.1. BASE CASE 

The apparent viscosity versus Darcy velocity 
(u = Q/A) curve for the flow of 1200 ppm solution in 
264 md Berea sandstone is illustrated in Fig. 2. 
Over most of the velocity range investigated, the 
log-log plot is linear, suggesting that J..'app is pro­
portional to un - 1 . The value of n that is obtained 
from the slope of the linear portion of the curve is 
0. 49. This value is essentially identical to the 
0.48 value obtained from the viscometer results. 

To compare the porous media and viscometer data, 
the flow velocities in porous media were converted to 
apparent shear rates using the following equation: 

n 

'Yapp C (3n + 1)~ u 
4n ~ [5] 
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where the units are ~ app 
k = cm2 . The derivation 
discussed in Appendix A. 

sec- 1 , u =em/sec, and 
of this equation is 

The apparent viscosities obtained in porous 
media are compared with the viscometer measured 
values in Fig. 3. In the power -law regime, the 
alignment of both data sets was effected by using a 
value of C = 6. 0. This value is higher than the 
values predicted by the capillary bundle model 
derivations1 • 4 • 13 • 14 which are summarized in 
Table II. The higher value of C determined experi­
mentally is consistent with the trend predicted by 
effective medium theory, as discussed later in Sec­
tion III of this study. 

At low shear rates, the solution continues to 
exhibit power-law behavior in porous media while 
Newtonian behavior is obtained in the viscometer. 
Thus, the apparent viscosities predicted from the 
viscometer data are lower than the values obtained in 
the porous media. At high velocities, the flow be­
comes less pseudoplastic and the apparent viscosity 
approaches a Newtonian value of J..'oo at infinite shear 
rate. Over the entire velocity range investigated, 
the porous media data appears to fit a modified 
power-law expression of the form: 

·n -1 
~-'oo + K 'Yapp J..' + K 

00 
[6] 

The solid line in Fig. 3 represents the apparent 
viscosities predicted by eq. [6] using the viscometer 
measured values for K and n from Table I and 
J..'oo = 1. 0. Excellent agreement is obtained between 
the predicted and actual values. As shown in the 
next sub-section, this equation also proves to be 
valid for different permeabilities, lithologies 
(sandstones and carbonates), and residual oil 
saturations. 

The transition from the first Newtonian regime 
to pseudoplastic behavior in viscometers is typically 
attributed to the onset of alignment of polymer mole­
cules with the flow field and decreased interactions 
(e.g. entanglements) between polymer molecules. At 
very low flow rates, the rod-like xanthan molecules 
are not likely to be aligned with the flow field. In 
porous media where the flow channel dimensions ap­
proach those of the polymer molecules, the nonalign­
ment at low flow rates as well as interaction with 
neighboring molecules in concentrated solutions may 
cause additional resistance to flow as polymer mole­
cules pass through flow constrictions. This could be 
responsible for the observed power-law behavior for 
these solutions at low shear rates in porous media. 
Results presented later illustrate that Newtonian be­
havior can be obtained at low shear rates in porous 
media at dilute concentrations where intermolecular 
interactions are expected to be minimal. 

An additional resistance to flow could also be 
obtained if microgels were present in solution or if 
polymer retention continuously reduced the effective 
permeability of the porous medium. Neither of these 
phenomena are believed to have been significant in 
this study. Excellent agreement was obtained for the 
apparent viscosities in the inlet, middle, and outlet 
core segments, as deduced from the pressure measure­
ments. If polymer aggregates were present, the ap­
parent viscosity in the inlet segment would be 
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expected to increase with time at low flow rates due 
to continuous trapping of aggregates. Large polymer 
aggregates were likely not present because the poly­
mer solutions were prepared from broths. Data 
obtained by Kolodziej 8 and Kohler and Chauveteau9 

suggest that microgels are much less likely to be 
present in solutions prepared from broths than those 
prepared from powders. In addition, in the present 
study, pseudoplastic behavior was also observed at 
very low flow rates for one solution that was pre­
pared using the slow-filtration technique developed 
by Chauveteau and Kohler7 to remove microgels from 
solution. Residual resistance factor measurements 
also indicated little or no change in core perme­
ability as a result of polymer injection. 

II.3.2. INFLUENCE OF SOLUTION AND 
RESERVOIR PROPERTIES 

The applicability of the conclusions obtained in 
the base case was studied further by investigating 
the effects of polymer concentration, permeability, 
lithology, temperature, and residual oil. The re­
sults of these studies are summarized below. 

Rock Permeability and Lithology 

The flow behavior of 1200 ppm xanthan solution 
was further studied in oil-free Berea sandstone cores 
having permeabilities of 100 and 740 md. The appli­
cability of eqs. [5] and [6) with C = 6.0 for these 
permeability levels is demonstrated in Fig. 4. The 
data for all permeabilities tested can be fit with a 
single curve. In addition, excellent agreement is 
obtained between the porous media data and the values 
predicted from viscometer data using eq. [6]. 

The effects of lithology were also investigated 
by characterizing the flow behavior of 1200 ppm solu­
tion in carbonate cores. The permeabilities of these 
cores ranged from 47 to 440 md. Fig. 5 indicates 
that eq. [5] with a value of C = 6.0 effectively 
represents the shear rate in these cores. Thus, the 
value of C appears to be independent of permeability 
and lithology, at least for the range of cores and 
solutions tested in this study. 

It is important to note that in all of these 
tests, permeabilities were not significantly reduced 
as a result of polymer injection. This was confirmed 
by residual resistance factor measurements that did 
not exceed a value of 1.1. Eq. [6] would not be ex­
pected to apply for cores in which the permeability 
was significantly reduced due to polymer retention. 

Residual Oil 

In oilfield applications the effective aqueous­
phase permeability is typically lower than the abso­
lute permeability of the porous medium due to the 
presence of residual or flowing oil. For these 
situations, it is likely that eq. [5] must be modi­
fied to reflect the effective aqueous permeability 
and saturation. An equation of the following form is 
proposed as an extension of eq. [5]: 

n 

6. 0 (3~~ll n:T 
u 

'Yapp Jkaq Saq4> 
[7] 

where kaq and Saq represent the effective aqueous 
permeability and fractional saturation at residual 
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oil, respectively. Equation [5] is a specific case 
of this equation for Saq = 1 (i.e., oil-free cores). 

To test this equation, the flow behavior of 1200 
ppm xanthan was studied in Berea sandstone cores hav­
ing a residual oil saturation. The results for two 
cores having effective brine permeabilities of 260 md 
and 52 md at residual oil are presented in Fig. 6. 
Also included in the plot are the results obtained 
from the oil-free core having a permeability of 264 
md. The solid curve represents the apparent vis­
cosities predicted from the viscometer data and eq. 
[8] below: 

[

3n+ 1] n [ 6 . Ou ] n-
1 

4n jk S t/J 
aq aq 

[8] J.L + K 
<X) 

The excellent agreement between the predicted 
and experimental values indicates that eq. [8] can be 
used to effectively represent the flow behavior in 
the porous media tested both in the absence and pre­
sence of residual oil. 

The complete data set obtained for all of the 
tests with the 1200 ppm solution at 25°C is presented 
in Fig. 7 . The flow behavior in any of the cores 
tested can be predicted from the results obtained in 
any one of the cores or from the viscosity data using 
eqs. [7] and [8). 

Polymer Concentration 

To establish the effects of polymer concentra­
tion on flow behavior, the flow of 300, 600, and 1600 
ppm xanthan solutions was studied in 765 md Berea 
sandstone core. The apparent viscosities in porous 
media are plotted in Fig. 8, along· with the vis­
·cometer values. Porous media shear rates were calcu­
lated from eq. [ 5] using the value of C = 6. 0 that 
was determined from the test with 1200 ppm solution. 
The excellent agreement that is obtained in the 
power-law region between the porous media and vis­
cometer values for all concentrations suggests that 
eq. [5] is valid and that the value of C is indepen­
dent of polymer concentration. 

For concentrations of 600 ppm and higher, power­
law behavior was also exhibited in porous media at 
very low shear rates. The solid lines in Fig. 8 for 
these solutions represent the apparent viscosities 
predicted by eq. [6). The apparent viscosities pre­
dicted from eq. [6] agree very well with the measured 
values. 

In contrast to the results obtained at low shear 
rates for high concentrations, Newtonian behavior was 
observed in porous media for the 300 ppm solution. 
This concentration is believed to be close in value 
to the overlap concentration for this solution, C*, 
below which interactions between polymer molecules. 
are negligible. As noted earlier, the observed 
power-law behavior for more concentrated solutions at 
low shear rates may reflect an increased resistance 
to flow due to molecular interactions in the pore 
spaces. Additional testing is needed to verify this 
hypothesis. 

For the 300 ppm solution, and presumably for 
lower concentration solutions, the extended power-law 
behavior predicted by eq. [6] is not applicable. For 
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these solutions, the Carreau expression of eq. [3] is 0.45 and 0.85. Thus, the applicability of eqs. [5] 
suitable. The agreement between the porous media and and [7] appears to extend to Gogarty's data and thus 
viscometer viscosities for the 300 ppm solution in beyond the flow of xanthan in consolidated porous 
Fig. 8 suggests that the values for ~0 , ~~· K, and n media. 
can be determined from the viscometer and used to 
predict the flow behavior in porous media. The solid 
curve for this solution in Fig. 8 represents the 

.apparent viscosities predicted by eq. [3] using 
~0 = 8.6 cp, ~~ = 1.0 cp, K = 17 cp-secn- 1 and 
n=0.75. 

Temperature 

The impact of elevated temperature on the flow 
behavior was investigated for the 1200 ppm solution 
at 80°C, The viscometer and porous media results are 
presented in Fig. 9. In contrast to the zsoc re­
sults, Newtonian behavior is observed for this con­
centration at 80°C in porous media at low apparent 
shear rates. Apparent viscosities in porous media 
agree with viscometer results over the entire ap­
parent shear rate range tested and the Carreau ex­
pression, eq. [ 3], applies. The solid curve in 
Fig. 9 represents the apparent viscosities predicted 
by eq. [3] using ~0 =8.8 cp, ~~ = 0.35 cp, K = 30 cp 
secn- 1 , and n = 0.65. 

Differences in the structural or flexibility 
characteristics of the xanthan molecules and/or de­
gree of intermolecular interactions may be responsi­
ble for the difference in flow behavior obtained at 
zsoc and elevated temperature. It has been re­
ported10 • 24 that xanthan can undergo an "order-dis­
order" (helix-coil) transition and/or denaturation. 
These conformational changes are influenced by tem­
perature, the salinity and hardness of the solution, 
and possibly the characteristics of the spec~fic xan­
than tested, Additional testing is needed to under­
stand the changes and their impact on flow behavior. 

II.4. COMPARISON WITH PREVIOUS STUDIES 

For the solutions tested in this study, the flow 
behavior in porous media under a wide variety of con­
ditions can essentially be predicted from one set of 
coreflood results or from viscometer data by using 
eq. [7] to calculate the apparent shear rate in 
porous media. This equation also appears to be 
applicable to some, but not all, of the results re­
ported in the literature. 

As discussed earlier, Teeuw and Hesselink1 re­
ported that the power-law exponents obtained in vis­
cometer and coreflood tests of xanthan solutions in 
Bentheim sandstone were similar. However, as shown 
in Fig. lO(a), consistency indices calculated from 
the porous media data, Kcore• C = /2, were lower than 
the values measured with the viscometer, K. These 
results indicate that the porous media shear rates 
were underestimated by using a value of C = j2. As 
illustrated in Fig. lO(b), the agreement between the 
porous media and viscometer values can be improved by 
using the value C = 6.0 obtained in the present 
study. 

From studies of carboxymethylcellulose, Gogarty, 
et al. 11 reported that the rheograms of glass bead 
and sandpacks could be aligned with those obtained in 
a viscometer by using eq. [1] with the value of 
C = 50/ jlSO. Shear rates calculated from eq. [ 5] 
with our value of C = 6.0 are identical to Gogarty's 
values for n = 0. 6 and within experimental accuracy 
(less than 10% difference) for values of n between 
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In contrast to the results of the present study, 
Willhite and Uhl2 and Hejri et al. 5 reported that the 
measured power-law exponents for flow of xanthan 
solutions in Berea sandstone cores and unconsolidated 
sandpacks were lower than viscometer values. Thus in 
those tests, flow behavior in porous media could not 
be predicted a priori from viscometer data. 

At very low shear rates, the observed flow be­
havior in porous media in the present study also dif­
fers with results obtained by Chauveteau and co­
workers.3·6 In the present study, power-law behavior 
was obtained at zsoc for solutions having concentra­
tions of 600 ppm and higher. Newtonian behavior was 
exhibited by the 300 ppm solution at zsoc and the 
porous media apparent viscosity was equal to the vis­
cometer-measured value. Chauveteau has also reported 
Newtonian behavior for flow of xanthan solutions in 
glass bead packs, sand packs, and sandstones at low 
shear rates. However, the apparent viscosities in 
porous media were lower than the values measured in a 
viscometer. As the permeability decreased, the ap­
parent viscosity decreased. This was attributed to 
depletion layer effects in which polymer molecules 
are ste:dcally hindered from the vicinity of pore 
walls. In the present study, the observed agreement 
between porous media and viscometer viscosities for a 
wide variety of conditions suggests that depletion 
layer effects are not significant for the solutions 
tested. The difference in the two studies may pos­
sibly be attributed to different polymer solution 
properties such as conformation and/or flexibility of 
the polymer molecules, solution concentration, and 
salinity. For the solutions used in the present 
study, the average molecular weight and the intrinsic 
viscosity values are consistent with the values re­
ported by Holzwarth1 2 for solutions of double­
stranded xanthan. In contrast, the solutions used by 
Chauveteau consisted of single-stranded xanthan hav­
ing an average molecular weight of 1.8 x 106 and in­
trinsic viscosity of 4300 cc/g. In addition, the 
solution concentration in Chauveteau's sandstone 
tests is believed to be significantly below the over­
lap concentration (C*) whereas in the present study 
the concentrations were typically above C*. Concen­
tration differences may not be the complete answer, 
however, since Chauveteau's tests with higher concen­
tration solutions in SiC packs suggest that depletion 
layer effects become more significant as concentra­
tion increases. 

Additional tests are needed to fully understand 
the causes for the different results obtained by 
various investigators. 

III. THEORETICAL DERIVATION 

In this section, the flow behavior of a power­
law fluid is studied theoretically by employing a 
more realistic model than traditional capillary 
bundle model approaches4 · 13· 14 . As indicated in Sec­
tion II, these approaches.underestimate the value of 
the coefficient C in the shear rate expression. This 
is not surprising, as the capillary bundle model can­
not describe the connectivity of flow channels and 
their variable cross-section. Typically, the "tortu­
osity factor" 4 is arbitrarily included in the model 
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to· account for the tortuous flow paths in the porous 
body. Employing a more realistic model of porous 
media that features the connectivity of flow channels 
and their variable cross-section has been difficult 
due to the accompanying mathematical complexity. 

The model used in the present study remedies the 
above shortcomings. It consists of a regular network 
of capillary tubes, and the radii of tubes, which 
have a prescribed probability distribution, are ran­
domly distributed in the network (see Fig. 11). Such 
a model has been employed by Koplik15 and Levine and 
Cuthiell1 6 to study the flow of Newtonian fluids in 
porous media. The average flow behavior in such a 
network then can be fairly accurately described by 
employing the so-called effective medium theory. The 
main objective of this theoretical analysis is to 
provide insight as to why the predicted apparent 
shear rate from the capillary bundle model is much 
lower than suggested by experimental data. 

III.l. EFFECTIVE MEDIUM THEORY FOR FLOW IN 
POROUS MEDIA 

The effective medium theory was originally de­
veloped to calculate the electrical conductivity for 
a regular network of resistors with randomly dis­
tributed conductivities17 ,18, If g is the conduc­
tivity of a channel and p(g) is the normalized prob­
ability distribution for g, the effective medium 
theory shows that the conductivity for all channels 
of the network can be replaced by a single, effective 
conductivity, gm, which can be obtained from the 
equation: 

[9] 

where z is the coordination number for the network. 

Consider now a regular network of capillary 
tubes, in which the tube radii of a given probability 
distribution are randomly placed in the network 
(Fig. 11). The coordination number (z) then repre­
sents the connectivity of a pore with its neighboring 
pores. If water without polymer flows in such a net­
work, the flow rate in a tube of radius r is given by 

q [10] 

where Pw is the viscosity of water. The flow conduc­
tivity for water in the tube can be defined as 

[11] 

In this and the later derivation for a power-law 
fluid, the pressure drop which occurs at the tube 
joints, due to change of tube cross- section19 and 
change of flow direction, is neglected. 

The effective flow conductivity for water in the 
network, gm, can be obtained from eq. [9], in which 
p(g) is now replaced by p(r), the normalized pore 
size distribution. The average flow rate for the 
tubes of the network can now be given as: 

358 

q = m 
[12] 

where rm is the effective tube radius calculated from 
eq. [11] with g = gm· The Darcy velocity of the net­
work is then 

u [13] 

where 

2 [ 2 ~a = ~ r p(r)dr 

0 

[14] 

is the average cross-sectional area of the tubes in 
the network, and we also define E = a/rm. From the 
Darcy's equation and eq. [13], we obtain the perme­
ability of the network as 

k 

III.2. NETWORK OF CAPILLARY TUBES WITH A 
POWER-LAW FLUID 

[15] 

Suppose now a polymer solution which follows the 
power-law viscosity equation [ 4] flows through the 
network. The relation between q and (~P/L) in a tube 
of radius r is given by 

q [16] 

The flow conductivity for the power-law fluid is now 
defined as 

1 
3+i'i G = ~r [17] 

1 
ii 

(3~)(2K) 
n 

Because the effective medium theory is based on 
the linear relationship between the flux and the 
potential, a special manipulation is needed to apply 
the theory to the non-linear relation between flux 
and potential (pressure gradient) given by eq. [16]. 
The application of the effective medium theory for 
our particular situation is described in Appendix B. 
As given by eq. [BSJ, the pressure gradient for the 
tube with the conductivity of G can be expressed in 
terms of the average pressure gradient (~P/L)m, and 
the effective conductivity, Gm, as 

[18] 

According to the effective medium theory, the 
variations of the pressure gradient with respect to 
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the average value, (~P/L)m, should vanish when 
averaged over the whole network 

rw:J -[a:) ]p(r)dr 0 
o m 

[19] 

from which follows the equivalent of eq. [9]: 

p(r)dr 0 [20] 

The relation between q and (~P/L) in the effective 
network will then be 

[21] 

Larson20 has shown, from volume averaging arguments, 
that the relation between flux and pressure gradient 
for a power-law fluid in porous media should take the 
form of [21]. 

The Darcy velocity for the network can now be 
given as 

1 
+ n 

1 
1 2 n 

(3 + ~)(erm) (2K) 

[22] 

where ).rm is the effective tube radius for the flow 
of a power-law fluid, defined by 

).r 
m [ 

(3 + .!.) ~ ] 3:+ 1 
__ ...:;.;n_ (2K) Gm 

1r 

[23] 

Inserting eq. [15] into [22] and rearranging the re­
sulting equation, we obtain 

n 
u (Sk)_2_: -2- ).3n+1 (~p) 

[ 

n+1 n-1 ] 

(3+~) En-
1 

(2K) 

[24] 

The apparent viscosity in the network can then 
be written, according to the definition [2], 

K [3n+l]n [fieu]n-
1 

~-'app = ).3n+1 ~ Jli4 [25] 

From eq. (25], we can also obtain the apparent shear 
rate in the network (see Appendix A). The resulting 
expression is similar to eq. [5], with the following 
"constant" or coefficient: 
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3n+1 

c j2_ EA r::n- [26] 

We can thus express, even for the random networks, 
the dependency of the apparent viscosity (or the 
apparent shear rate) on the Darcy velocity and 
permeability in the same manner as that of eq. [ 5] 
from the capillary bundle model. It is noted, 
however, that the parameters, E. and A, also depend on 
the permeability because they are implicit functions 
of the network structure. The effect of these 
parameters on the apparent shear rate is examined 
below. 

In order to bring the value of eq. [26] to the 
experimentally measured value C = 6. 0 of eq. [ 5], 
making ). > 1 will have the largest impact. The 
physical significance of the above observation is 
this: due to its shear-thinning nature, the effective 
radius ).rm for the flow of a power-law fluid is al­
ways larger than the effective radius rm for the flow 
of a Newtonian fluid, when the connectivity and the 
variable cross-section of flow channels are taken in­
to consideration. In the capillary bundle model, the 
two radii are implicitly assumed to be identical. 

III.3. NETWORKS WITH BIMODAL DISTRIBUTION OF 
TUBE RADII 

In order to see how the connectivity of flow 
channels and their variable cross-section affect the 
apparent viscosity of a power-law fluid, we will con­
sider, for simplicity, a network with a bimodal prob­
ability distribution of tube radii (or pore sizes). 
That is, expressed in normalized form, 0 fraction of 
the tubes will have a radius of unity and the remain­
ing (1-0) fraction will have a radius of a, which are 
distributed randomly in the network: 

p(r) = OS(r-1) + (1 - 0) S(r-a) [27] 

To obtain the effective radius rm for Newtonian 
fluids, we insert eqs. [11] and [27] into [9]: 

---=-o ___ + _ ____,(o....::l:....,__--'o'-') __ 

1 + (~ - l)r4 

2 m 

1 
z 4 
- r 
2 m 

which can be solved for rm as a function of 0, a and 
z as follows 

[28] 

where 

B 

To obtain the effective radius ).rm for power-law 
fluids, we insert eqs. [17] and [27] into [20]: 
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1 [29] 

[~(~rm) ••~]" 
which can be solved for Arm as a function of 8, a, n 
and z. As the above equation is implicit in Arm, it 
needs to be solved numerically. The radius ratio, A, 
can thus be obtained from eqs. [28] and [29]. 

To obtain e, we calculate a from eqs. [14] and 
[27]: 

I 
co 

2 2 a = r p(r)dr 
0 

8 + (1 - 8 )a
2

• [30] 

Inserting the parameters A and e calculated from 
the above equations into eq. [25], we can now study 
how the apparent viscosity is affected by the struc­
ture of the network. Before we consider the general 
case, two simpler cases will be studied first, in 
order to obtain a better understanding of the model. 
The first is the case of z = 2, i.e., the network is 
a bundle of unconnected capillary tubes, but with a 
series of constrictions and expansions (Fig. 12(a)). 
The second case is when a= 0, i.e., the network con­
sists of capillary tubes of a uniform radius, but a 
certain fraction of the connections are blocked ran­
domly (Fig. 12(b)). 

III.3.1. CAPILLARY TUBES WITH A SERIES OF 
CONSTRICTIONS AND EXPANSIONS 

In order to circumvent the inadequacy of the 
capillary bundle model, a number of re­
searchers1·19•21 adopted, as a model of a porous 
medium, capillary tubes with a series of constric­
tions and expansions. Such a model can be considered 
within the framework of the present theory simply by 
setting z = 2. In Appendix C, the apparent shear 
rate expression for this simplified case is derived 
as eq. [C3]. It is noted that eq. [C3] is in fact 
identical to the one derived by Teeuw and Hesselinkl , 
as eq. [ 13] of their paper. Their derivation was, 
however, limited to this particular case, and was 
made in a deterministic way, i.e., the constrictions 
and expansions were placed regularly, rather than 
randomly as we do. 

Fig. 13 shows the coefficient C from the ap­
parent shear rate of [C3] as a function of the radias 
ratio of narrow to wide tube segments (a) and the 
fraction of wider tube segments ( 8) , when n ... 0. 5. 
The C value from our experiments (6.0) is also shown 
for comparison.' We see that the constrictions and 
expansions could indeed increase the coefficient 
value from what is obtainable from the capillary 
bundle model. The increase in coefficient is more 
pronounced when the fraction of the wider tube seg­
ments is larger than the fraction of the narrower 
tube segments (8 > 0.5). 

III.3.2. A RANDOM NETWORK OF OPEN AND CLOSED 
CHANNELS 

We now study how the connectivity of flow chan­
nels affects the apparent viscosity, by setting 
a= 0. That is, 8 fraction of the tubes will have a 
radius of unity and the remaining (1-8) fraction will 
have a zero radius, forming a random network of open 
and closed channels. The porous body created thus 
has a uniform tube radius, but the tubes are randomly 
connected and tortuous. In Appendix D, the deriva­
tion of the apparent viscosity expression for this 
case is given. 

Fig. 14(a) shows the coefficient C of the ap­
parent shear rate as a function of the open channel 
fraction, 8, and the power-law exponent, n, when the 
coordination number, z = 6. The value of C = 6. 0 
from eq. [ 5] , which fits experimental data well, is 
also shown. We see that the coefficient value again 
becomes larger than what is obtainable from the 
capillary bundle model. As the fraction of the open 
channel decreases, i.e., the flow path becomes more 
tortuous, the increase in coefficient becomes more 
pronounced. Fig. 14(b) is similar to Fig. 14(a), 
except that the coordination number is now z = 4. 
Interestingly, we find that the C value from the 
experiments (6.0) can be obtained when the effective 
coordination number, 8z, is about 2.3 to 2.5. This 
point will be further elaborated below. 

III.3.3. GENERAL CASE OF BIMODAL DISTRIBUTION 
OF TUBE RADII 

In the above two subsections, we examined the 
effects of the variable cross-section of flow chan­
nels and the connectivity of flow channels on the ap­
parent shear rate, by considering two limiting cases 
of the bimodal distribution. The general case of bi­
modal distribution of tube radii will be studied here 
by solving eqs. [28] and [29], and inserting there­
sulting values of A and e into [26]. 

Fig. 15(a) shows the coefficient C of the ap­
parent shear rate as a function of the fraction of 
wider tube, 8, and the radius ratio, a, when the co­
ordination number, z - 4, and the power-law exponent, 
n = 0.5. Figs. 15(b) and (c) are similar to Fig. 
15(a) except that z = 6 and 8, respectively. We see 
that when the radius ratio (a) is small, the coeffi­
cient value is almost independent of a, which means 
that there will be practically no flow through the 
thinner tubes due to the shear-thinning nature of the 
polymer solution. This is an interesting observation 
because, even when a polymer molecule is accessible 
to a narrow pore channel, there will be practically 
no movement of polymer through the channel. When a 
is smaller than about 0.2, therefore, the network be­
haves similar to the simpler network of open and 
closed channels considered in the above section. As 
we have noted in the above section, the experimen­
tally reasonable value of the coefficient (C - 6.0) 
can again be obtained with the effective coordination 
number, 8z, of about 2.4. 

Fig. 16 is similar to Fig. 15(b) except that n =-
0.4 instead of 0.5. We see that the power-law expo­
nent does not affect the coefficient as significantly 
as the parameters which represent the pore structure, 
i.e., 8, a and z. 
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III.4. DISCUSSION 

From the above study, the following three obser­
vations can be made. First, the fact that the effec­
tive coordination nwnber, ()z, of about 2. 3 to 2. 5 
fits experimental data well suggests that the bulk of 
polymer flow occurs almost without any branching of 
the flow channels, even though the paths may be tor­
tuous. Second, the bulk of polymer flow also occurs 
through the wider channels of the porous body, and 
the flow through the narrower channels is negligible. 
Third, comparison of the results from the two limit­
igg cases suggests that the connectivity of flow 
channels is more important than the constrictions and 
expansions of the channels, in explaining the experi­
mental observation of C = 6.0. 

From the above observations, we may conclude 
that, to the polymer flow, the detailed structure of 
the small-scale pore channels is immaterial and only 
the connectivity of the wider channels is important. 
Polymer solutions generally zip through the wide 
channels of porous media, largely ignoring the small­
scale pore channels of the porous body. In a tortu­
ous and interconnected geometry of porous media, a 
shear-thinning fluid can flow much more effectively, 
through those flow paths which are wider, than a 
Newtonian fluid. This recognition can explain why 
the experimentally measured value of C in eq. [5] is 
much higher than the prediction from the capillary 
bundle model; and why eq. [ 5] seems to apply for a 
wide variety of porous media. 

Experimental evidence3 • 6 and theoretical con­
siderations 22 • 23 show that when a polymer solution 
flows in a thin capillary tube, the polymer molecules 
are excluded from the vicinity of the tube wall, due 
to the configurational restrictions imposed on the 
polymer chains by the wall. When a polymer solution 
flows in a porous mediwn, therefore, it is expected 
that a polymer-free, water layer will exist near the 
pore walls and, consequently, the apparent viscosity 
in the porous body will be lower than that for a bulk 
solution. The simple consideration given in Appendix 
E suggests that the inadequacy of the capillary 
bundle model for the shear-thinning fluid is due more 
to its failure to account for the connectivity of 
flow channels, as described in the above, than to its 
failure to account for the polymer exclusion near the 
pore walls. 

While the effective mediwn theory proved to be 
useful in understanding the effects of the connec­
tivity of flow channels and their variable cross­
section in a simple manner, its shortcoming due to 
its approximate nature should be noted here. The 
prediction from the effective mediwn theory is known 
to be poor near the percolation thresholdla, at which 
continuous flow channels cease to exist. Use of the 
theory developed here should therefore be avoided 
near the percolation threshold. For example, the 
percolation threshold for the random network of open 
and closed channels (Section III.3) can be calculated 
from eq. [D4] of Appendix D, by setting Arm - 0: 

9-1- [y]• [31] 

We see that the fraction of open channels at the per­
colation threshold depends not only on the coordina­
tion nwnber z, but also on the power-law exponent n. 
In re~lity, it should be independent of n. This 
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shortcoming arises from the averaging process involv­
ing the exponent in eq. [20]. For almost all porous 
media for which the apparent viscosity is considered, 
however, the network structure will be sufficiently 
removed from the percolation threshold, and the ef­
fective mediwn theory should be valid. 

In this study, for simplicity, the pore struc­
ture was limited to the bimodal distribution of pore 
sizes, even though the theoretical derivation of Sec­
tion III.2 can be applied more generally. Investiga­
tion with a more realistic distribution of pore sizes 
to explain the experimental observations in a more 
quantitative manner is warranted. 

IV. CONCLUSIONS 

1. 

2. 

3. 

An apparent shear rate equation has been de­
veloped to relate the flow behavior of xanthan 
solutions in cores having different permeabili­
ties, lithologies, and oil saturations. The 
equation can also be used to relate the apparent 
shear rates in porous media to those of the vis­
cometer. Although the shear rate dependence on 
flow velocity and effective permeability agrees 
with that predicted by traditional capillary 
bundle model approaches, the value of the ex­
perimentally-determined constant coefficient is 
higher than those predicted by the models. 

Although Newtonian behavior was obtained at low 
shear rates in the viscometer, power-law be­
havior was obtained in porous media at 25°C for 
polymer concentrations above the overlap concen­
tration C*. Newtonian behavior was exhibited at 
low shear rates in porous media for polymer con­
centrations near C* at 25°C and above C* at 
80°C, Two equations have been developed to pre­
dict these two different flow behaviors in 
porous media a priori from viscometer data. 

The apparent viscosity expression obtained from 
a network model with a bimodal distribution of 
tube radii fits the experimental data well when 
the effective coordination nwnber, ()z, is about 
2. 3 to 2. 5. This suggests that most of the 
polymer flow occurs almost without any branching 
of the flow channels, even though the paths may 
be tortuous. 

4. The bimodal network model also shows that when 
the radii ratio of narrow to wide tubes is 0.2 
or smaller, polymer flow. occurs mainly through 
the wider channels of the porous body, and the 
flow through the narrower channels is 
negligible. 

5. 

6. 

Since polymer solutions generally flow mainly 
through the wide channels of porous media, and 
largely bypass small-scale pore channels of the 
porous body, the detailed structure of the 
small-scale pore channels is almost immaterial 
to the polymer flow, and only the connectivity 
of the wider channels is important. This may 
explain why eq. [ 5] applies for a wide variety 
of porous media. 

The inadequacy of the capillary bundle model for 
the shear-thinning fluid is due more to its 
failure to account for the connectivity of wide 
flow channels than to its failure to account for 
the polymer exclusion near the pore walls. De­
pletion layer effects reported by other 

9 
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investigators experimentally were not observed 
in our study. 

NOMENCLATURE 

a 
c 

k,kaq 
K 

n 
p 
q 
r,rm 

Saq 
u 
z 
L\P/L 

Greek 

?'app 
'Yeff 
.X 

Jl. 

Jl.app 
Jl.o, Jl.oo 

average tube radius defined by eq. [14] 
constant in eqs. [1], [5]; the coefficient 
defined by eq. "[26] 
polymer concentration, ppm 
overlap concentration for polymer solution, 
ppm . 
flow conductivity for a Newtonian fluid, 
defined by eq. [11]; effective flow conduc­
tivity 
flow conductivity for a power-law fluid, 
defined by eq. [17]; effective flow conduc­
tivity 
permeability; aqueous-phase permeability, crn2 

consistency index defined by eq. [4], 
cp secn- 1 

power-law exponent defined by eq. [4] 
probability distribution of tube radii 
flux defined by eqs. [10] and [16], cm3jsec 
tube radius; effective tube radius for a 
Newtonian fluid, em 
aqueous-phase saturation 
Darcy velocity, em/sec 
coordination number for network 
pressure gradient, gr/cm3 

radius ratio, in eq. [27] 
1 - 6/R, defined in eq. [E4] 
a/rm 
apparent shear rate defined by eq. [A3] 
"effective" shear rate, sec - 1 

ratio of effective radius for flow of a 
power-law fluid to a Newtonian fluid 

viscosity from viscometer, cp 
apparent viscosity in porous media, cp 
Newtonian viscosity at zero and infinite 
shear rates, cp 
water viscosity, cp 
porosity 
fraction of tubes with a radius of unity, in 
eq. [27] 
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APPENDIX A: Shear Rate Expressions in Porous Media 

Capillary bundle model approaches1,4,13,14 pre­
dict that the apparent viscosity of a power-law fluid 
in porous media is related to the Darcy velocity u by 
the following equation: 

= K[3n+l]n [ Cu]n -
1 

JLapp -- --
4n jk¢ 

[Al] 

In this equation, the values of the consistency 
index K and the . power -law exponent n are determined 
from viscometer measurements. The theoretical value 
of C depends on the approach taken and the values 
used to account for the tortuosity of the porous 
medium. Values of C from several different ap­
proaches are summarized in Table II. All of these 
values are much lower than the value of C = 6.0 which 
we obtained from our experiments. 

In correlating the apparent viscosity data, 
Christopher and Middleman13 and others defined the 
"effective" shear rate in porous media, which is 
given by eq. [1] of the Introduction. Inserting 
eq. [1] into [Al], we obtain 

~'app ~ [3::1]K ~:f~ [A2] 

To make eq. [A2] conform with the power-law 
equation [4], the definition of the "effective" shear 
rate necessitates additionally defining the "effec­
tive" consistency index in porous media, (3n+l)K. 

4n 

In this study, a simpler approach is taken by 
defining the "apparent" shear rate by way of the 
power-law equation: 
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1 

"~app [
JL ]n:T app 

K 
[A3] 

By inserting eq. [Al] into [A3], we obtain 

n 

C [3n+ 1] n:T u 

4n N 
[A4] 

which is employed as eq. [ 5] in Section II. The 
above expression is also employed for eq. [26], even 
though C in the equation is now not a constant, but a 
function of the network parameters. 

APPENDIX B: Derivation of Eq. [18] by the Effective 
Medium Theory 

Consider a tube in the network, through which a 
power-law fluid flows according to the relation [16], 
and whose flow conductivity is G, as defined by 
eq. [17]. When the effective conductivity of the 
network is Gm and the average pressure gradient is 
(LlP/L)m, we would like to obtain the pressure 
gradient for the tube. Let Ge be the conductivity 
due to the flow between the nodes at the entrance and 
the exit of the tube, but not through the tube. 

The flow through the node at the entrance (or 
the exit) of the tube is, approximately, 

[Bl] 

If the conductivity of every tube in the network were 
Gm, we should have, from eq. [Bl], 

~ G [LlPJ~ 
2 m L 

m 
( G + G ) [LlP) ~ 

m e L 
m 

[B2] 

from which we can obtain 

[B3] 

When the conductivity of the tube is G and the 
pressure gradient is (LlP/L), we now obtain, instead 
of eq. [B2], 

[B4] 

Inserting eq. [B3] into [B4] and rearranging, we ob­
tain 

[B5] 
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APPENDIX C: Apparent Viscosity for Capillary Tubes 
with a Series of Constrictions and Expansions 

When z = 2, rm and Arm can be obtained from eqs. 
[28] and [29], respectively, 

[Cl] 

Arm= [8 + (1 - 8)/a3n+1]-1/(3n+1) [C2] 

Inserting eqs. [ Cl] , [ C2] and [ 30] into eq. 
[ 26] , we can obtain the apparent shear rate for 
capillary tubes with a series of constrictions and 
expansions: 

1 

I 

n+ 1 n+ 1]1="D 
. 2 -2- 4 -2- u 
~'app= J8+(1-8)a 8 (8 + (1-8)/a } _ 

2(3~)n (8+(1-8)/a3n+ 1 } jk¢ 

[C3] 

The physical significance of the effective 
medium theory can be better understood by re-deriving 
Arm of eq. [C2), as Teeuw and Hesselink1 did, in a 
deterministic manner. For tube segments of a unit 
radius and of radius, a, we can obtain from eq. [16] 
the respective pressure gradient: 

(t.P/L)
1 

~ [ [3;~] [C4] 

[CS] 

for both of which the flow rate is identical. The 
average pressure gradient can be calculated in terms 
of the relative fractions of the tube segments: 

The effective tube radius, Arm, will then be 

1 

(Ar )3n+1 
m 

= 8 + .li.:12. 
3n+1 

a 
[C7] 

which is in fact eq. [C2), as derived alternately by 
the effective medium theory. Eq. [C6) thus illus­
trates how the pressure fluctuation in the network is 
averaged in the effective medium theory, which is 
carried out by eq. [20]. 

APPENDIX D: Apparent Viscosity for a Random Network 
of Open and Closed Channels 

For a Newtonian fluid, inserting eqs. [27] and 
[11] into [9], we obtain 
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(1 - 8) - 0 
(z - 2) 

which can be solved for rm as 

~ 
r = [~] m z - 2 

[Dl] 

[D2] 

For the power-law fluid, inserting eqs. [27] and [17] 
into [20], we obtain 

1 
3+-

Z(Ar ) n 
m 

1 
3+­

n 

n 

+ (1-8) (_£)n - 1 = 0 
z-2 

which can be solved for Arm as 

n 

A [ 2A J 3n+1 
rm = z - (z - 2)A 

where 

[D3) 

[D4] 

The radius ratio, A, can now be obtained from eqs. 
[D2] and [D4] as a function of 8, z and n. From 
eq. [14], we can obtain 

a= J8 [DS] 

The apparent shear rate for a random network of open 
and closed channels can be subsequently calculated by 
inserting eqs. [D2], [D4] and [DS] into eq. [26]. 

APPENDIX E: Flow of a Power-Law Fluid with a Polymer­
Free Layer at the Pore Wall in the Capillary Bundle 
Model 

In order to see if polymer exclusion near the 
pore wall is indeed mainly responsible for the inade­
quate prediction of apparent viscosity by the capil­
lary bundle model, in this appendix, the capillary 
bundle model for the flow of a power-law fluid in a 
porous medium is modified to account for the presence 
of a polymer-free water layer at the pore walls. As 
suggested by Chauveteau and Zaitoun6 , it is assumed 
that the thickness S of the layer is approximately 
half the length of a polymer molecule and thus is 
constant. 

Consider a circular tube with a characteristic 
radius of R, in which a power-law fluid flows in the 
central area of r = 0 toR - S, and a polymer-free 
water flows in the remaining annular area near the 
wall. The flow rate from the tube can be calculated 
as 
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q ... [El) 

The Darcy velocity for the capillary bundle model 
will be 

[E2] 

According to the capillary bundle model, the 
characteristic radius can be replaced with the per­
meability by the relation 

R = j8k/</J [E3] 

Inserting eq. [E3] and the definition of the apparent 
viscosity [2] into [E2], we obtain 

where e - 1 - S/R. The apparent viscosity is thus 
given by the above equation in an implicit form. We 
note that when e = 0, i.e., S = R, the apparent vis­
cosity becomes water viscosity; and when e = 1, i.e.' 
S = 0, the equation becomes 

~-'app = K[3n+l]n [/2 u]n-1 

4n jk<!J 

[E5] 

for the power-law fluid alone. The above equation 
can be obtained from eq. [ 25] by setting e = 1 and 
A= 1; that is, all the tubes in the network have the 
same radius and are not connected, as in the capil­
lary bundle model (see Appendix A). 

When the Darcy velocity becomes large, the above 
equation approaches the following equation 

K [3n+l]n [/2u]n-
1 

~-'app = e3n+1 ~ N [E6] 

which is similar to eq. [E5]: however, the term e 
representing the polymer-free layer makes the predic­
tion of the apparent viscosity from eq. [ E6] even 
higher than that from eq. [ E5] . When the Darcy 
velocity becomes small, eq. [E4] approaches 

#app = [E7] 

The physical significance of the above equation is 
that when the Darcy velocity is small, a very viscous 
(almost rigid) slug of the polymer solution glides on 
a layer of water, so that the apparent viscosity is 
governed only by the relative thickness of the water 
layer and water viscosity. Both of the above 
limiting behaviors are not what are observed experi­
mentally. Therefore, while polyme-r exclusion near 
the pore wall may be partly responsible for the lower 
apparent viscosity measure-d, it does not appear to be 
the major contributor. 

Table I 

VISCOMETER PARAMETERS 

CE (EEm2 n K (cE secn-1) 
I:!:. a {cE2 

300 0.75 17 8.6 
600 0.60 43 26.0 

1200 0.48 195 102.0 
1600 0.35 620 1000.0 

Table II 

VALUES OF COEFFICIENT C IN SHEAR RATE EQUATION 

Source 

Present study 

Teeuw _and Hesselink1 

Christopher and Middleman1 3 

Bird, et al. 14 

365 

c 

6.0 

12 = 1.414 

121~ = 0.980 
.Ju 

12·~ = 
.112 

2.041 
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Fig. 13-The coefficient C of the apparent shear rate lor the model with z = 2 with a series of constrictions 
and expansions, as a function of a and 8 when n = 0.5. 
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