

NMT 890029

Polymer-Augmented Waterflooding and Control of Reservoir Heterogeneity

George F. Schurz, Science Service, and F. David Martin, Randy Seright, and W.W. Weiss, New Mexico Petroleum Recovery Research Center

This paper was prepared for presentation at the Centennial Symposium Petroleum Technology Into the Second Century at New Mexico Tech, Socorro, NM, October 16-19, 1989.

This paper was selected for presentation by the New Mexico Tech Centennial Symposium Committee. Contents of the paper, as presented, have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. It submitted for publication, this paper is subject to publication review by Editorial Committees of the Society of Petroleum Engineers. Petroleum Engineers. Petroleum Engineers and as restricted to an abstract of not more than 300 words. Illustrations may not be copied. The abstract should contain conspicuous acknowledgment of where and by whom the paper is presented. Write Publications Manager, SPE. P.O. Box 833836, Richardson, TX 75083-3836. Telex, 730989 SPEDAL.

<u>Abstract</u>

The use of water soluble polymers in injection brine improves sweep efficiency in waterfloods thus increasing oil recovery. In 1978 a comprehensive review¹ of this use of polymers cited over 100 papers. The present paper reviews activity since that time emphasizing field usage, new application methods, and changing economics.

Introduction

Only about one third of the oil discovered in the United States is recovered by the combination of primary plus secondary oil production. The principal method of secondary oil production is waterflooding, which at present, accounts for more than one-half of all oil production in the United States.²,³ Improvements in waterflooding then can substantially improve total U S oil production. Waterflooding is a thoroughly studied process and the factors affecting oil recovery are well delineated. The maximum recovery which might be obtained under any economic condition is of course the total mobile oil available at the start of waterflooding. The actual waterflood recovery is less than this maximum, the amount being determined by physical factors and economic conditions. Physical causes found to determine the practical recovery include injection rate, relative permeability to oil and water, the distribution of permeability in the reservoir, and the water-oil mobility ratio.⁴ Each of the preceding factors may be changed by the incorporation of water soluble polymer in the injection fluid.Such

References and Figures at end of paper.

polymer augmented waterflooding (PAW) is designed to either reduce the permeability of the formation to water, to increase water viscosity, or to obtain some combination of such effects so that sweep efficiency and oil recovery are improved. Improvement in sweep efficiency implies either contacting more of the reservoir with injection fluid or more rapid production of oil per unit of fluid injected, that is, by improved micro displacement.

The preceding is based on the assumption that the only effect of polymers on waterflooding is to improve sweep efficiency but not to change residual oil saturation. This is the usual case, residual oil determined in the laboratory is the same whether a polymer solution or normal waterflood brine is used. Other chemicals, say surfactants or microemulsions, do reduce residual oil saturation. When used to increase oil production many of these other systems require the use of polymer to improve sweep efficiency. The present review does not include a detailed examination of these alternate chemical processes however they will be discussed as economic competitors to PAW. Of course, the general principles of polymer use discussed will be applicable to all processes.

Polymers Used

Two polymers, xanthan gum, and polyacrylamide containing 10 to 30% acrylate groups (HPAM), have been used for PAW. Chemical structures of the products are shown in Figure 1. Viscosity characteristics of typical products are shown in Figure 2. Xanthan yields solutions whose viscosity is little

affected by salinity. on the other hand, the viscosity of HPAM changes dramatically with changes in salinity. The effective viscosity of water soluble polymers flowing through reservoir rock may be higher or lower than the bulk viscosity of If a porous media is solutions. represented by a simple model such as a bundle of capillary tubes, the polymer viscosity indicated from flow tests is not that observed in bulk tests of the same polymer. Polymer sclutions of rigid molecules (xanthan) commonly show lower viscosity than expecte show higher than molecules such expected viscosity. HPAM thus reduces the mobility of water in core tests far more than would be predicted from simple viscosity measurements. The effect, first described by Pye⁵, is quantified by a number, resistance factor. Resistance factor is the pressure ratio, at constant flow rate, comparing flow with water and polymer solution. For fluids where viscosity is the only consideration, the resistance factor and the viscosity value are identical. The question arises as to whether resistance factor is as effective in oil recovery as viscosity. Jennings⁶ published laboratory data showing that solutions of HPAM with high resistance factor recovered additional oil even though their measure bulk viscosity was low. The recovery was similar to that from a Newtonian viscous agent. This work also examined the effect of polymer adsorption and adsorption of polymer by the formation was found to delay incremental oil production. Because of adsorption and because polymer solutions miscibly displace connate brine a water bank forms in front of the polymer so the initial displacing agent in a PAW is always later. Polymer solution lags this water lank by an amount which depends on the poly er adsorption and the initial water saturat on. As reported by Jennings, these actors can delay the beneficial effect of polymer.

The large size of the polymer molecule. used for mobility control may make it impossible for the polymer to penetrate some of the smallest openings in the formation matrix. Studies using very fin filters' have shown that a given polymer will penetrate say a 1.2 micron filter bu be restrained by finer pores. Dawson⁸ conducted the first systematic study of this effect in reservoir core material. The polymer is excluded from portions of the reservoir while small molecules can enter all permeable sand sections. The polymer molecules therefore traverse a smaller void space and emerge before small molecules. Pore size and shape are important factors in excluded volume effects. It has also been found that hydrodynamic forces reduce polymer concentration in the region adjacent to the pore walls⁹. These excluded volume effects mitigate adsorption to some extent and permit more rapid penetration of the reservoir by the polymer. Usually, in PAW

adsorption is the more powerful effect and is sufficient to cause polymer to lag the injection front. In chemical floods however, polymer may lead the injection front because of reduced adsorption.

Stability of Polvmers Under Conditions of

Application of polymer in PAW requires that the polymer be stable for several years under reservoir conditions. Damage to pclymer occurs in several ways. During injection, high shear rates near the injection well can cause polymer degradation. Chemical reactions can change the base polymer, HPAM for example is subject to hydrolysis converting amide groups to acrylate. Chemical attack may also break polymer chains reducing polymer molecular weight. Finally bacterial attack may result in damage to the polymer.

Shear degradation is unlikely with xanthan gum but is of concern when using HPAM. In fact, the low viscosity of xanthan gum solutions at high shear makes injection easier and constitutes a significant advantage for this product. HPAM on the other hand may be degraded at the injection well. Studies by Maerker¹⁰ and by Seright¹¹ examined the problem, offered methods of predicting injection rates for polymer solutions, and determined the extent of degradation to be expected. Degradation is at a minimum in fresh water and is increasingly severe as salinity of the injection brine increases. Degradation is particularly sensitive to the presence of hardness ions. Application of polymers must be conditional on being able to inject without excess damage either to the polymer or to injection rate. While laboratory study- is of value, the most certain method of determining this is by a field injection trial. Tests usually involve injection followed by back production of polymer. Thus in the Stanley Stringer quality retent on was better than expected¹². By the use f such a field injectivity test Weiss¹³ determined mobility control when cores were no available for laboratory tests.

Chemical degradation, that is loss of molecular weight by chemical reaction, has been extensively studied with both polymers. A major factor in preventing degradation is absolute elimination of oxidizing agents such as air from solutions. Normal practice is to add a chemical reducing agent, typically sodium hydrosulf te, to provide complete oxygen removal. Under these conditions polymer remaine able for indefinite periods even at high reservoir temperature. Thus at ph 7 and temperature of 80° C (176° F) Seright¹⁴ estimated from rate studies that xanthan would retain 50% of its initial viscosity for 5 year period if dissolved in brine. In fresh water and at ph other than seven xanthan degrades more rapidly. HPAM was tested by Mc Williams¹⁵ and under air free conditions shown to retain 90% of its initial viscosity after one year at 200° F. At a temperature of 50° C Knight¹⁶ showed that formaldehyde, at the 200 ppm level, was a good stabilizer for HPAM even in the presence of oxygen. Since formaldehyde also acts as a bacteriostat the combination has been often used in the field.

Chemical change, apart from loss of molecular weight is also possible. Thus, xanthan is subject to deacetylation which changes its structure without necessarily harming its mobility control capability. HPAM, on the other hand, may suffer hydrolysis of amide groups converting them to acrylate groups. A high degree of conversion makes the polymer subject to precipitation by hardness ions, calcium or magnesium. Since calcium is ubiquitous in reservoirs this is a very damaging reaction. For this reason, HPAM is normally considered applicable only at temperatures below about 160° F where the hydrolysis reaction may be slow enough to provide acceptable life for the polymer.¹⁷

Bacterial attack on the polymers may also cause loss of mobility control . Xanthan is apparently more susceptible than HPAM to such loss and the structures of the two products indicate such should be the case. Surfactant flood tests which had monitor wells showed in several cases that xanthan was destroyed in the field.¹⁸ After experiencing problems in one such field application, study indicated that xanthan preservation could be accomplished by using very high concentrations of formaldehyde, say 1500 ppm. At such levels the formaldehyde essentially sterilized the solution and resulted in good retention of quality. Whether such treatments need to be continuous or only used intermittently is open to question. Also, since formaldehyde is a small molecule, excluded volume effects may cause separation of xanthan from formaldehyde in the reservoir. This factor of course applies to most other biocides as well.

Alternate or New Polymers

The deficiencies listed for xanthan and HPAM have led to a search for polymers or other materials which might replace the current products. Norton 19 studied most common water soluble polymers singly and in combinations hoping to find superior performance. While some synergisms were observed there was not sufficient improvement to lead to usable systems with existing materials. There has also been a continuing effort to produce new products with improved properties.

Two of the more interesting efforts may be mentioned. Doe²⁰ reported that copolymers of acrylamide and other monomers, particularly vinyl pyrrolidone, showed resistance to hydrolysis and precipitation at high temperature. The creation of a structure of alternating monomers is known to alter the properties of each monomer unit in the polymer chain.²¹ In the products discussed by Doe such alternation apparently limits the hydrolysis of the acrylamide unit and prevents precipitation by calcium ion. Mc Cormick et al²² has prepared products of moderate molecular weight which tend to associate in brine solution. The products are of low viscosity when dissociated but when combined into high molecular weight products show the high viscosity expected from that molecular weight. It is proposed that the molecules will dissociate under the high shear experienced at the injection well. Consequently injection will be expedited. At the low shear experienced in the body of the reservoir the product will again associate giving good mobility control. Whether low cost, low adsorption, products of this type can be produced remains to be determined.

Application to the Individual Field

Core tests measure mobility control effects on a microscopic scale. The effect on oil recovery of such changes in mobility can be assessed by reservoir simulators. Such simulations have progressed from simple examination of the effect of viscosity change on recovery to modeling the effect of possible chemical reactions, cross flow, and complex viscosity functions on PAW.23 With the increasing sophistication of such modeling, errors in the earlier projections of additional oil recovery by PAW should be detected. This has not occurred, current projections are for the most part quite similar to those of earlier models. These powerful calculation tools are an indispensable aid in evaluating the benefit of mobility control to waterflooding.

For preliminary examination of fields, prior to the use of a simulator, it is possible to approximately calculate recovery by hand.²⁴ Recently simple computer programs have become generally available to replace hand calculation. One such program was developed by the National Petroleum Council for its 1984 survey of Enhanced Oil Recovery potential in the United States²⁵. The program cited permits rapid calculation of PAW using only desk top model computers. Typical run time is less than 5 minutes using a computer operating at 5 mHz with an Intel 80286 cpu, 80287 math chip and 640 K of RAM. The program is distributed free of charge by the US DOE. In addition to the oil recovery estimation this program outputs an economic projection. These simple calculation methods are not sufficiently rigorous to permit actual project design. Instead they are useful screening tools which are capable of selecting good field candidates and rejecting unlikely prospects. Data input for either is similar to that needed for the final simulation. The hand calculation has value in offering insight into what is happening

3.

but it is slower and for more than a single field is excessively time consuming.

Fractured Reservoirs

Polymer flow behavior in fractured reservoirs is quite different from application in normal permeable rock. In fractures the non Newtonian polymer solutions have low viscosity and are ineffective in controlling flow. If natural fractures exist, which are short relative to the well spacing, polymer use may be beneficial. Flow control then can occur in the formation adjacent to the fractures. For non packed fractures which communicate from well to well polymers solutions have little value. To control solutions have little value. flow under these conditions polymer in the form of a cross-linked insoluble gel may be utilized. The same polymers used for mobility control are commonly used to prepare the gels for control of flow in fractures. Other polymers produce similar gels but have been less used for this purpose. The advantage of the gel treatment over other methods of sealing fractures is the depth of penetration presumably obtained by using the soft gel. Bypassing of the blocking agent is less likely if penetration in depth can be achieved.

Routson²⁶ offered data on project applications in which severe channeling occurred through fractures. Fractures were identified by very rapid transit times for tracers. Polyacrylamide gel formed by cross-linking soluble polymer with chromic ion was applied to block flow in the fracture and as shown by additional tracer studies was successful. Retreatment was necessary in one case before permanent blockage was obtained. Water cut reduction and oil production gains were reported as a result of the treatment. Prior to fracture blockage, water flowing through the fracture had not been displacing oil. Once the fracture was closed injected water was diverted to oil producing areas. As a result, oil production increased in both the production well connected to the fracture and in adjacent wells.

Subsequent to this demonstration, extensive use of polymar gels for control of water flow has developed. The principal cross linking agents used have been the aluminum ion, normally furnished as aluminum citrate, or trivalent chromium. The The trivalent chromium is often prepared by mixing the polymer solution with dichromate ion then using a suitable reducing agent to prepare the trivalent ion. Extensive research on methods of preparing the trivalent chromium has developed processes²⁷ which delay gelation so that the gel is formed long after injection and at great depths into the formation, Gelled polyacrylamide is essentially immobile and cannot be injected into formations of low to moderate permeability. Gelation in situ permits treatment of formation as well as fractures.

Xanthan is also gelled by trivalent chromium however the gel is much more reversible to shear. Under high shear the gel reverts to a low viscosity fluid and when shear is reduced the gel reforms. This permits xanthan to be used as a preformed gel which can be injected at high shear and minimum viscosity. Xanthan gel therefore can be used in formation as well as in fractures without the complication of a chemical reaction to delay gelation.

Laboratory Tests

Use of mobility control agents is predicated on laboratory tests using cores and fluids from the field concerned. Foshee²⁸ has presented procedures for the conduct of the specialized tests needed. Considerable care is required to obtain valid results. The initial information needed is the apparent viscosity of the polymer solution at varying concentration and flow conditions as well as the retention of polymer by the core.

Testing chemically identical polymers of varying molecular weight will show that products of higher molecular weight have greater viscosity in solution and higher resistance to flow in cores. Pore size in the core places an upper limit on the molecular weight of the polymer used. **Products of** excessively high molecular weight may te completely filtered from solution. Within each polymer sample however lie a wide range of molecular weights some of which may be close to the point of being filtered from the solution. Also it is possible that the polymer contains small amounts of insoluble or slowly soluble material. These factors may lead to reduction in injection rate above that expected on the basis of mobility change alone. Such problems have led to the use of xanthan gum in the broth or solution form in spite of the high shipping cost associated with these dilute solutions. Similarly, field manufacture of HPAM is reported to yield a product with better injectivity than commercial products.²⁹ It was of interest to study this problem since it has appeared at a large number of installations. Filtration studies of the type reported by Gogarty? were chosen as the test method however it appeared desirable for this purpose to use filters other than those used by Gogarty, Because interaction between rock and polymer are important factors in both flow and filtration behavior plastic filters were rejected. Glass fiber filters were selected for the **te**sts. While certainly were rejected. far from identical to reservoir rock, these filters offer a tortubus flow path and are available free of plastic binders. The products used were Whatman grade GF/D which have a nominal retention of 2.7 u. Tests at pressures 1 rom 5 to 20 psi across the filters showed little or no shear degradation during filtration. The higher pressure was used in most of the study since it saved time. Tests on polymer free

brine which had been filtered through a 0.45 U membrane filter are shown in Figure Little plugging is shown under these 3. conditions but there is some difference in rate between individual filters even from the same lot. The differences in rate are undesirable but not critical to the testing since comparison of the initial filter rate with the rate at later times is used as the measure of plugging. Data was fitted to a polynomial using a least squares fit program. Three or four terms adequately fitted the data.

1) $T = ac + by^2 + cy^3 + Dy^4 \cdots$

Differentiating the above equation and examining the value at zero time shows that the constant a is a measure of the resistance factor of the solution in the glass filter before plugging. We may expect this to correlate in some fashion with resistance to flow in reservoir rock. Higher terms in the equation are plugging factors for the sc lutions used. A run on a widely used dry commercial product is shown in Figure 4. Solution viscosity before and after filtration as well as screen factors for the solutions are shown. Viscosity measurements were made with a Brookfield viscometer at 6 secl. Composition of the "fresh" vater used in the test is shown in Table 1. The composition approximates a water used in waterfloods in east Texas and north Louisiana. It is clear that plugging is occurring with the product under the test conditions. Also as shown in Figure 5 the filtration is removing small amounts of plugging material. Polymer solution vsscosity and screen factor change by trivial amounts but filtration behavior improves. This was somewhat surprising since tests years earlier in brines had shown the product to inject quite readily.³⁰ Tests in 3 % MaCl brine were repeated on the product with the results shown in Figure 6. In brine the degree of plugging is far less than in the fresh water used in the first test. While this is not surprising in view of the properties of HPAM it made clear why after many years of successful use of this specific product it was being found damaging to injection at a number of locations. Prior use of PAW was for the most part in floods using brine as the injection medium. The surfactant floods started at about this time were often in fresh water as were a significant number of the PAW operations.³¹ ³² This led to greater sensitivity to plugging materials in the polymer than previously. The question as to how best to cope with fresh water systems had several possible answers. Among these were:

a - Introducing more she r while preparing the polymer solution. This might selectively destroy plugging materials.

b - Selective chemical degradation of the plugging materials.

c Reducing the molecular weight of the products.

d - Locating alternate products which filtered adequately without treatment.

The effect of shear during polymer dissolution was determined by comparing solutions prepared on a laboratory mixer with little or no shear with solutions sheared quite strongly on a Waring blender. The higher shear rates gave improved filtration but at a high loss in solution screen factor which is syncnymous with a loss in mobility control. Data on the run: made is shown in Figure 7. The data indicates that for preparing solutions the use of a propeller with a shroud (Jiffy Mixer) operated for one minute at 600 rpm and followed by minimum agitation gave the best combination of good filtration behavior plus solution quality. The product tested in this case was an emulsion product however similar behavior was observed for solid materials. The solutio made up on the magnetic mixer had the highest viscosity and screen factor but ha poor filtration behavior. The solutions made up on the Waring blender were held fo one minute with the blender operating at either 55 or 110 volts. It appears that shear. at least as introduced by a Waring blender, is not a good method of improving filtration properties. The improved filtration occurs at a high cost in terms of solution quality. Coefficients of equation 1 are listed in Table 2 for these runs. Chemical degradation showed much poorer response than mechanical degradation. There remains some chance that mechanical degradation under other conditions might improve results over tho: shown. It would be of interest to test degradation in thin sheets of porous media or in fine mesh screens. Our attention was diverted from this possibility by the discovery that some commercially available samples had much better filtration behavior. Examination of a large number products led to a significant group which had excellent filter characteristics. Filter behavior of a good solid product i shown in Figure 8. and of a good emulsio product is shown in Figure 9. As an indication that the filter tests are a useful guide to behavior in the field we were able to obtain a sample of material prepared by a field polymerization proces and confirmed that the product gave a filter performance equivalent to the good products shown above. The field manufactured product is reported to show better performance in the field than commercial products previously used.³³ Also a sample from a field operation whic had shown poor injectivity yielded the behavior shown in Figure 10. There is them some correlation between filter testing and reported field behavior. The limited number of examples in our experience of course makes this correlation tentative at present.

F	POLYMER FLOODING FIELD ACTIVITY	salinity polyacrylamide bank will be
I	Discussion to this woist has such as a the	vator A gogond aggumption is that
I	biscussion to this point has emphasized the	problems associated with polyacrylamide use
I	However a process in ovistors for many	(mechanical degradation galinity and
I	nowever a process in existence for many	divalent-ion intolerance injectivity and
I	bictory At least three polymer floods were	field-handling problems) are less severe
I	underway as early as 1961 Since then	than problems associated with xanthan use
I	more than 300 polymer floods have been	(higher-cost, microbial degradation.
I	implemented. Manning et al. ³⁴ conducted a	injectivity and field-handling problems).
I	very complete study of 226 project listings	
I	for polymer floods that were initiated	Field activity in polymer flooding reflects
I	prior to 1983. At the peak of EOR	a general concern that polyacrylamide and
I	activity, the Oil and Gas Journal ³⁵ listed	xanthan polymers do not have sufficient
I	178 active polymer projects. Polymer	stability for use in high-temperature
I	floods have been field tested under an	reservoirs. Only seven percent of the
I	incredibly wide range of conditions (see	projects in the Manning study and 12
I	Table 1).	percent of the projects in the new study
I	Since polymer flooding is often stated to	have reservoir temperatures above 750C,
I	be the least complex EOR process, one might	
I	expect a fairly good definition of where	The median permeability for polymer floods
I	polymer flooding does and does not work	has always been low, and lable 4 suggests
I	especially after thirty years of extensive	that it is decreasing. Part of this
I	field testing. One might also expect the	decrease may be attributed to the increased
I	chronology of field activity to reflect	irequency of floods in less-permeable
I	reinement in where and now polymer floods	carbonate reservoirs. (The ratio of floods
I	are applied. With this in mind, lable 4	In sandstone reservoirs to carbonate
I	flooding manageting from Manning a 100	reservoirs dropped from 1032 to 24271 14
I	atudy with there of a new atudy that was	recent years.) Inus, the ability of
I	anduated by one of the authors Wanning a	polymers to propagate through low
I	study govers the first twenty years of	permeability rock has grown in importance.
I	polymer field activity while the new study	An issue related to recervoir permeability
I	focuses on the past ten years Table 4	is that of injectivity Injectivity
I	also includes data from three recent	problems has often been reported during
I	polymer floods that were conducted outside	field projects Ceneral agreement exists
I	the United States. 36 37 38 These projects	that water guality, polymer dissolution and
I	were included for three reasons First	microbial growth are important factors that
I	their incremental oil recovery due to	impact injectivity However, a debate
I	polymer flooding-is among the highest of	exists concerning the utility of injection
I	all projects. Thus, they provide good	above the formation parting pressure to
I	examples of conditions where polymer	improve polymer injectivity. Especially
I	flooding will work best. Second, the	for concentrated polymer solutions,
I	projects are well documented. Third,	injectivity is expected to be significantly
I	because they were conducted outside the	less for polymer solutions than for water.
I	United States, they were not directly	If an injector is fractured, will the
I	influenced by the U.S. tax policy.	increased injectivity outweigh the
I		increased risk of channeling? Also, will a
I	One interesting fact to emerge from Table 4	shear-thinning xanthan solution have a
I	is that the median oil/water viscosity	significantly greater injectivity than a
1	ratio for field projects has been	shear-thickening polyacrylamide solution?
I	relatively low6.8 from the Manning study	
1	and 5.4 from the new study. This means	Table 4 shows that the median polymer
	that the water/oil mobility has been	concentration during polymer injection has
1	favorable (less than one) or near favorable	increased significantly in recent years.
Т		This reflects a greater reliance

for half of all projects prior to polymer flooding. In contrast, the three individual projects listed in Table 4 all had very high oil/water viscosity ratios and mobility ratios.

Both the Manning survey and the new survey reveal that polyacrylamides have been used far more often than xanthan (by ratios of 19:1 and 11:1 respectively). This has occurred in spite of the fact that 80 percent of the projects involved reservoirs with resident brine salinities greater than one percent total dissolved solids (TDS). This reflects a widespread reliance on two assumptions that have been the subject of ongoing debate. The first assumption is that a low-salinity preflush and/or a low-

has з. This reflects a greater reliance on reducing water mobility through viscosity increase rather than permeability reduction. The median number of pounds of polymer injected per acre-foot has increased by about 67 percent.

Table 4 lists three different types of projections of incremental oil recovery (over projected waterflood recovery) --\$00IP, bbl oil/1b polymer, and bbl/ac-ft. For all three types, the median projections of incremental recovery are less for the 1980-1989 period than for the earlier period. The three individual projects listed have dramatically higher levels of incremental \$ OOIP and bbl oil/ac-ft. However, a substantially greater quantity

of polymer was injected (per acre-foot) for these three projects. Based on the incremental barrels of oil per pound of polymer, the superiority of the three individual projects is less obvious. Even so, these projects clearly show that polymer floods can dramatically improve oil recovery under the right circumstances. The high levels of incremental oil recovery provide a convincing demonstration of the benefits of polymer flooding. Too often in the past, the response from a given polymer flood has been too small to quantify without considerable ambiguity:

Finally, as with all EOR processes, improvements in reservoir description are needed. Very often, some wells in a given project respond much better to the EOR process than others. Improved reservoir description may help establish where and how a particular process can be applied most effectively. FIELD ACTIVITY WITH CROSS-LINKED POLYMERS

Cross-linked polymer treatments (gel treatments) were developed to reduce channeling of fluids through fractures and streaks of very high permeability. These treatments have been successfully applied to both injection wells and production The success in injection wells has wells. been demonstrated in the North Stanley polymer flood. Here, gel treatments were applied to plug fractures prior to implementing a traditional polymer flood.³⁹ A large portion of the tertiary oil recovered in this project was attributed to the gel treatments rather than to the polymer flood. Gel treatments in production wells have worked particularly well in reducing water coning in the bottom-water-drive Arbuckle reservoirs of Kansas.⁴⁰ Gel treatments have also been applied to reduce channeling in miscible floods.⁴¹ ⁴² Near-wellbore applications of cross-linked polymer treatments in injection wells experienced explosive growth between 1980 and 1986. This growth can be largely attributed to the Windfall Profits Tax Act of 1980. Table 5 provides median properties for 127 injection-well treatments that were applied in the 1980's. Table 3 also lists the extremes under which this technology has been implemented.

Applications of cross-linked polymer technology can be contrasted with those of traditional polymer floods by comparing Tables 4 and 5. The median water/oil ratio (WOR) at project start-up for cross-linked polymer treatments is over twice the value for traditional polymer floods. Higher WOR values reflect the more severe channeling problems in cross-linked polymer candidates.

Compared with traditional polymer floods, cross-linked polymer treatments are more likely to use xanthan and are less likely to be used in carbonate reservoirs. No

D. MARTIN , G. SCHURZ, R.SERIGHT, W.W.WEISS

technical reason is apparent. The median polymer concentration for cross-linked polymer treatments is three times greater than that for traditional polymer floods. This is not unexpected, since high polymer concentrations are needed for gel formation. The median number of pounds of polymer injected per acre-ft of reservoir is dramatically less for gel treatments than for traditional polymer floods (4 vs 30 lbs/ac-ft). This was expected since gel treatments usually have involved small fluid volumes.

7.

In terms of % OOIP and bbl oil/ac-ft, the median incremental oil projected for crosslinked polymer treatments is roughly half that for traditional polymer floods. However, when expressed as bbl oil/lb polymer, the median incremental oil recovery projected from cross-linked polymers is almost twice that for traditional polymer floods. Because of the Windfall Profits Tax Act, implementation of gel treatments was influenced as much or more by tax considerations as by technical factors. Thus, additional effort will be required to sort out how and where these treatments are best applied.

conclusions

Over a wide range of conditions, waterfloods augmented by the use of polymers show improvement in oil production.

The use of polymers in waterflooding was greatly stimulated by tax incentive programs.

The economics of using polymer depend on normal cost factors plus the amount of reduction in injection rate suffered from polymer use. Polymer selection therefore is an important factor in polymer economics.

REFERENCES

- Clang, H.L., "Polymer Flooding 1. T chnology, Yesterday Today and Tomorrow", J. Pet. Tech. (August, 1978) p 1113.
- Enhanced Oil Recovery, National 2. Petroleum Council, Washington D.C., (June 1984)
- Statistical Analysis of Crude Oil 3. Recovery and Recovery Efficiency, American Petroleum Institute, Bulletin D14, April 1984
- 4. Improved Oil Recovery, Interstate Oil Compact Commission, Oklahoma City OK. 1983

	8 POLYMER AUGNENTED WATERFLOODING AND CONTROL	OF RES	ERVOIR HETEROGENEITY NMIECH 890029
5.	Pye, D.J., Improved Secondary Recovery Through The Control of Water Mobility, J. Pet. Tech, 911, (Aug 1964) Jennings, R.R., Rogers, J.H., West, T.J., Factors Influencing Mobility Control by Polymer Solution J. Pet	20.	Doe, P.H., Moradi Araghi, A., Shaw,J.E., Stahl, G.A., Development and Evaluation of Polymers Suitable for Hostile Environments: Copolymers of Vinylpyrrolidone and Acrylamide, SPE 14033, Presented 60th Ann Tech Conf Las Vegas (Sept 1985)
	Tech., 391 (March 1971)	21.	Harris Stephen H., Gilbert, Richard
7.	Gogarty, W.B., Mobility Control with Polymer Solutions, SPEJ 7, 161, (June 1967)		D., "Acrylonitrile-4-Vinylpyridine Copolymers, Effect of Comonomer Sequence Distribution on Properties** J. Pol. Sci. V20, 1653 (1982)
8.	Dawson R., Lantz, R.B., Inaccessible Pore Volume in Polymer Flooding, SPEJ,		
	448, (Oct 1972)	22.	McCormick, C.L., Hester, R.D., Polymers for Mobility control In EOR,
9.	Chauveteau, G., Fundamental Criteria in Polymer Flow Through Porous Media	23	Datta Gu
	in Water Soluble Polymer ^S , Ed. Glass, J.E.,ACS, Advances in Chemistry Series, 213, p227,(1986)		K., Effects of REservoir Heterogeneity on Chemically Enhanced Oil Becovery SPE/DOE 14889 Presented
10.	Maerker, J. M., Mechanical Degradation		SPE/DOE Fifth Sym. on EOR (April 1986)
	Solutions In Porous Media, SPEJ, 172, (Aug 1976)	24.	Jennings R.R., Practical Design of Mobility Control Polymer Projects, 26th Ann. SW Pet. Short Course, Texas
11.	Seright, R. S., The Effects of Mechanical Degradation and		Tech University, Lubbook TX. 137-145 (1979)
	Viscoelastic Behavior on Injectivity of Polyacrylamide Solutions, SPEJ,	25	Polymor Prodictive Medal DOF (SPE-
	475, June 1983	23.	86/10/SP Venezuela-MEM/USA-DOE, Washington D.C. (Dec. 1986)
12.	Johnson, J.P. and Fred Burtch North Stanley Demonstration Project First Ann. Rept., July 1975-June 1976 BETC/TPR-76/3	26.	Routson, W.G., Neale, M., Penton, J.R. A New Blocking Agent for Waterflood Channeling, SPE 3992, Presented 47th Ann. Fall Mtng SPE, San Antonio, TX.
13.	Weiss, W.W., Chain, J.M., J Sand Polymer Flood Performance Review, SPE 18974, Presented Joint Rocky Mountain Regional/Low Perm, Reservoirs Sym. Denver CO March 6-8, 1989	27.	(Oct 1972) McCool, C.S., Green, D.W., Wilhite, G.P., Permability Reduction Machanisms Involved in In-Situ
14.	Seright, R.S. and Henrici, B.J., Xanthan Stability at Elevated Temperatures, SPE/DOE 14946 – Presented Fifth Annual SPE/DOE Sumposium on FOR April 1986		Polyacrylamide/Chromium(VI)/Thiourea System, SPE/DOE 17333, Presented SPE/DOE Sixth Symposium on EOR (April 1988)
15.	Mc Williams', D.C., Rogers, J.H., West,T.J., Water Soluble Polvmers in Petroleum Refovery, Water Soluble Polymers, Plenum Publishing Corp. New York, NY	28.	Foshee, W.C., Jennings R.R., West.T.J., Preparation and Testing of Partially Hydrolyzed Polyacrylamide Solutions. SPE 6202 Presented at 51st Ann Fall Mtng SPE New Orleans (Oct 1976)
16.	Knight, B.L., Reservoir Stability of Polymer Solutions, J.Pet.Tech 618 (May 1973)	29.	US 4433727 Argabright, P.A., Rhudy J.S., Oil Recovery Process Feb. 1984
17.	Shupe, R.D., J Pet Tech, 1513 (Aug 198])	30.	Schurz, G. Unpublished filtration Study.
18.	Widmeyer, R.H., Williams, D.B., Ware, J.W., Performance Evaluation of The	31.	Weiss, W.W., Baldwin, R.W., Planning and Implementing a Large Scale Polymer Flood, JPT, 720, (April 1985)
	Salem Unit Surfactant/Polymer Pilot, SPE 14442 SPE Reprint Series #23 EOR Field Case Histories 172	32.	Holstein, E. D. Polymer Augmented Waterflooding at The West Yellow Creek Field Recovery and Cost Experience
19.	Norton, C J., Falk, D.O. Synergism in Thickened Water Systems for Improved Oil Recovery, SPE 5550, Presented 50th		SPE/DOE 9826 Presented Second Joint Symposium on EOR April 1981, Tulsa, OK.
	Ann Fall Conf. Dallas, TX, (Sept 1975)		

· · ·	NMTECH 890029 D. MARTIN	· SCH	IURZ, R.SERIGHT, W.W.WEISS 9
33.	DOE/BETC 79-4, EOR and Improved Drilling Technology-20, Commercial Demonstration of EOR by Micellar Polymer Flooding page 37.	38.	 Maitin, B., Daboul, B., and Sohn, W. O., "Numerical Simulation for Planning and Evaluation of Polymer Flood Process: A Field Performance Analysis, SPF pages 17621
34.	Manning, R.K.et al.; "A Technical Survey of Polymer Flooding Projects," DOE report: DOE/BC/10327-19, US Dept. of Energy, Washington, D.C., September, 1983		at the SPE International Meeting on Petroleum Engineering held in Tianjin, China, November 1-4, 1988.
		39.	. DuBois, B.M.: "North Stanley Polymer
35.	Leonard, J.: "Increased Rate of EOR Brightens Outlook," Oil & Gas J. (Apr. 14, 1986) 88-94.		and Final Report," Report BETC/RI- 78/19, U.S. Dept. of Energy, Washington, D.C., November, 1978.
36.	Koning, E.J.L., Mentzer, E., and Heemskerk, J "Evaluation of a Pilot	40	. Hessert, J.E. and Fleming, P.D.: "Gelled Polymer Technology for
	Polymer Flood in the Marmul Field, Oman," SPE paper 18092 presented at the 63rd SPE Annual Technical Conference and Exhibition held in Houston, TX, October 2-5, 1988.		Control of Water in Injection and Production Wells," Presented at the Third Tertiary Oil Recovery Conference held in Wichita, KS, April, 1979.
37.	Maitin, B.K. and Volz, H.: "Performance of Deutsche Texaco AG's Oerrel and Hankensbuettel Polymer Floods," SPE/DOE paper 9794 presented at the 13th Annual OTC in Houston, TX. (May 4-7, 1981.)	41	. Woods, P., et al.: "In-Situ Polymerization ControlsCO*/Water Channeling at Lick Creek," SPE/DOE paper 14058 presented at the Fifth SPE/DOE Symposium on Enhanced Oil Recovery held in Tulsa, OX, April 20- 23, 1986.
		42	Wagner, O.R., Weisrock, W.P. and Patel, C.: "Field Application of Lignosulfonate Gels to Reduce Channeling, South Swan Hills Miscible Unit, Alberta, Canada, "SPE paper 15547 presented at the 61st SPE Annual Technical Conference and Exhibition held in New Orleans, LA, October 5-8,

Table 1. Make Up of Synthetic Fresh Water

1986.

<u>Material</u>	Amount (gm/1)		
NaHCO3 Na2CO3	.303 .055		
$\begin{array}{c} \text{CaCl}_2 \cdot 2\text{H}_2\text{O} \\ \text{MgCl}_2 \cdot 6\text{H}_2\text{O} \\ \text{NaCl} \\ \text{Na}_2\text{SO}_4 \end{array}$.011 .0084 .105 .003		

Carbonates and the remaining components are dissolved separately then combined. Solution ph is adjusted to 6.9 with dilute HCl.

Table 2. Constants in Empirical Curve Fit

<u>Condition</u>	a	b	C	đ
Mag Mixer	0.57/8	1.75×10^{-3}	-4.1×10^{-7}	9.44×10^{-10}
Jiffy Mixer	0.661	5.74×10^{-4}	-1.2×10^{-7}	1.36×10^{-10}
Waring 55v	0.472	5.04×10^{-4}	3.2×10^{-8}	6.0 x10-12
Waring 110v	0.259	7.5 x10 ⁻⁸	1.3x10 ⁻¹⁰	9.0 <u>x10⁻¹¹</u>

 Table 3*

 Range of Conditions Under Which Polymer Floods Have Been Initiated

<u>Property</u> <u>Minimum</u>	<u>laximum</u>
Oil viscosity (cp)	1494
Temperature (°C)	113
Average Permeability (md) 1.3	5.000
Average Porosity 0.06	0.38
Resident brine salinity (% TDS) 0.3	21.3
Oil saturation at start-up 0.31	0.89
Producing water/oil ratio at start-up 0	100
Net pay (ft) 4	432

* Data taken largely from Ref. 36 with some updates.

	Table 4	
Properties of	Polymer Flooding	Field Projects

Median Values From Surve		les From Surveys	Selected Individual Projects			
Reservoir &	1960-1982' 1980-1989			a ser en la		
Fluid Properties	(226 proj.)	(99 proj.)	Marmul ³	Oerrel ^{4,5}	Courtenav ⁶	
Oil/water viscosity ratio						
at reservoir temperature	6.8	5.4	114	39	55	
Reservoir temperature (°C)	46	46	46	58	30	
Permeability (md)	101	54	15,000	2000	2500	
% OOIP present at start-up	74.6	74	≈92	81.5	≈69	
Producing WOR at start-up	2.4	5.0	1.1	4	4	
Lithology (sand:carbonate)	10:1	2.4:1	sand.	sand.	sand.	
Polymer Injection						
Polymer (HPAM:Xanthan)	19:1	11:1	HPAM	HPAM	HPAM	
Polymer concentration (ppm)	250	500	1000	1500	1000	
lbs polymer/ac-ft	19.2	32	373	162	536	
Projected Incremental Recovery Over Waterflooding						
% OOIP	4.8	3.7	25	≈13	≈14	
bbl oil/lb polymer	1.3	0.64	1.2	≈1.4	≈0.5	
bbl oil/ac-ft	25	20.5	461	≈230	≈290	

Table 5Properties of 130 Field Projects InvolvingPolymer Gel Treatments In Injection Wells(1980-1989)

Reservoir &				
Fluid Properties	Median	Minimum	Maximum	
Oil/water viscosity ratio				
at reservoir temperature	8.4	0.65	280	
Reservoir temperature (°C)	49	18	116	
Permeability (md)	100	4.1	5000	
% OOIP present at start-up	76.1	27.4	98.9	
Producing WOR at start-up	10.8	0	160	
Lithology (sand:carbonate)	4.4:1			-
Polymer Injection				
Polymer (HPAM:Xanthan)	2.3:1			
Polymer concentration (ppm)	1527	100	8600	
Lbs polymer/ac-ft	3.8	0.01	127	
Projected Incremental				
Recovery Over Waterflooding				
% OOIP	2.0	0.01	25	
bbl oil/lb polymer	2.4	015	560	
bbl oil/ac-ft	122	0.09	215	
NETERTINE TELEVISION NETERIA		0.07	6 1 7	

login **g**erski

. 253. (op f

 $r < \frac{1}{2}$

1.4

ġŔ

and and

1. 19 10

(terr

24 17.9

C de

je v

5.15 . AN

10

1 12

 $w_{i} \in \mathbb{R}^{n \times n}$ XANTHAN GUI STRUCTURE 1. 68 19 A. 18

FIG. 1 STRUCTURE OF POLYMERS

Stored Milda and the first

18 N. M. M. A.

FIG. 2 POLYMER SOLUTION VISCOSITY en Na statu

CONTRACT. \$ 18 C

nare tento da

a sa kariya

				Table 3				
Range	of	Conditions	Under	Which Polymer	Floods	Have	Been	Initiated

Proverty	<u>Minimum</u>	<u>Maximum</u>
Oil viscosity (cp)	0.072	1494
Temperature (°C)	8	113
Average Permeability (md)	1.3	15,000
Average Porosity	0.06	0.38
Resident brine salinity (% TDS)	0.3	21.3
Oil saturation at start-up	0.3 I	0 . 89
Producing water/oil ratio at start-up	0	100
Net pay (ft)	4	432

* Data taken largely from Ref. 36 with some updates.

	Median Valu	es From Surveys	Selected	Selected Individual Projects			
Reservoir &	1960-19821	1080-1080					
<u>Fluid Properties</u>	(226 proj.)	(99 proj.)	<u>Marmul³</u>	Oerrel ^{4,5}	Courtenav ⁶		
Oil/water viscosity ratio							
at reservoir temperature	6.8	5.4	114	39	55		
Reservoir temperature (°C)	46	46	46	58	30		
Permeability (md)	101	54	15,000	2000	2500		
% OOIP present at start-up	74.6	74	≈92	81.5	≈69		
Producing WOR at start-up	2.4	5.0	1	4	4		
Lithology (sand:carbonate)	10:1	2.4: 1	sand.	sand.	sand.		
Polymer Injection		and the second					
Polymer (HPAM:Xanthan)	191	11:1	HPAM	HFAM	HPAM		
Polymer concentration (ppm)	250	500	1000	1500	1000		
lbs polymer/ac-ft	19.2	32	373	162	536		
Projected Incremental							
Recovery Over Waterflooding							
	4.8	3.7	25	≈13	≈14		
bbl oi!/lb polymer	1.3	0.64	1.2 ·	≈1.4	≈0.5		
bbl oil/ac-ft	25	20.5	461	≈230	≈290		

Table 4Properties of Polymer Flooding Field Projects

Table 5Propert es of 130 Field Projects InvolvingPolymer Gel Treatments In Injection Wells(1980-1989)

eservoir &				
Fluid Properties	Median	Minimum	Maximum	
Oil/water viscosity ratio				
at reservoir temperature	8.4	0.65	280	
Reservoir temperature (°C)	49	18	116	
Permeability (md)	100	4.1	5000	
% OOIP present at start-up	76.1	27.4	98.9	
Producing WOR at start-up	10.8	0	160	
Lithology (sand:carbonate)	4.4: I			
Polymer Injection				
Polymer (HPAM:Xanthan)	2.3: 1			
Polymer concentration (ppm)	1527	100	8600	
Lbs polymer/ac-ft	3.8	0.01	127	
Projected Incremental				
Recovery Over Waterflooding	L			
% OOIP	2.0	0.01	25	
bbl oil/lb polymer	2.4	0.15	560	
bbl oil/ac-ft	12.2	0.09	215	

FIG. 5 EFFECT OF PRIOR FILTRATION

FIG. 6 EFFECT OF SALINITY

