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Summary

Combining low-salinity-water (LSW) and polymer flooding was proposed to unlock the tremendous heavy-oil resources on the Alaska
North Slope (ANS). The synergy of LSW and polymer flooding was demonstrated through coreflooding experiments at various condi-
tions. The results indicate that the high-salinity polymer (HSP) (salinity¼ 27,500 ppm) requires nearly two-thirds more polymer than
the low-salinity polymer (LSP) (salinity¼ 2,500 ppm) to achieve the target viscosity at the condition of this study. Additional oil was
recovered from LSW flooding after extensive high-salinity-water (HSW) flooding [3 to 9% of original oil in place (OOIP)]. LSW flood-
ing performed in secondary mode achieved higher recovery than that in tertiary mode. Also, the occurrence of water breakthrough can
be delayed in the LSW flooding compared with the HSW flooding. Strikingly, after extensive LSW flooding and HSP flooding, incre-
mental oil recovery (approximately 8% of OOIP) was still achieved by LSP flooding with the same viscosity as the HSP. The pH
increase of the effluent during LSW/LSP flooding was significantly greater than that during HSW/HSP flooding, indicating the presence
of the low-salinity effect (LSE). The residual-oil-saturation (Sor) reduction induced by the LSE in the area unswept during the LSW
flooding (mainly smaller pores) would contribute to the increased oil recovery. LSP flooding performed directly after waterflooding
recovered more incremental oil (approximately 10% of OOIP) compared with HSP flooding performed in the same scheme. Apart from
the improved sweep efficiency by polymer, the low-salinity-induced Sor reduction also would contribute to the increased oil recovery
by the LSP. A nearly 2-year pilot test in the Milne Point Field on the ANS has shown impressive success of the proposed hybrid
enhanced-oil-recovery (EOR) process: water-cut reduction (70 to less than 15%), increasing oil rate, and no polymer breakthrough so
far. This work has demonstrated the remarkable economical and technical benefits of combining LSW and polymer flooding in enhanc-
ing heavy-oil recovery.

Introduction

Heavy-oil resources are abundant and account for a large portion of the total oil reserves around the world. Thermal methods, such as
steamflooding, are effective techniques to develop the heavy-oil resources. However, in some areas the thermal methods are not feasi-
ble. For example, the Milne Point heavy-oil reservoir on the ANS is thin and covered with a thick permafrost layer. Heat loss and envi-
ronmental concerns make thermal-recovery methods unacceptable. Solvent-based methods (solvent agent: carbon dioxide, methane,
and propane, and/or their mixture) show potential in reducing the in-situ oil viscosity and enhancing the oil recovery (Jiang et al. 2019;
Sun et al. 2020). However, the high mobility of the displacing agent would make it challenging to achieve the anticipated EOR perfor-
mance without additional measures. The cost is also a key concern because a massive amount of relatively expensive solvent is
required. Waterflooding can maintain the production at the early stage, but it soon shows premature breakthrough and fast rise of water
cut (Kargozarfard et al. 2019). Polymer flooding is believed an effective method to unlock the heavy-oil resources in this area. Success-
ful field applications of polymer flooding in heavy-oil reservoirs have been reported around the world, including in Canada (e.g.,
Pelican Lake, Seal, Cactus Lake), China (e.g., Bohai Bay), the Middle East, Suriname (e.g., Tambaredjo), and Trinidad and Tobago
(Saboorian-Jooybari et al. 2016).

The first-ever polymer-flood pilot test on the ANS has been implemented since August 2018 (Dandekar et al. 2019, 2020; Ning et al.
2019; Wang et al. 2020). Because an LSW resource is readily available in the field and no additional facilities are required, it is possible
to combine the advantages of LSW and polymer flooding in a technically and economically attractive way at Milne Point. Despite the
convenient implementation of the hybrid EOR process, however, it is challenging to fully understand the physics of the complex
polymer/brine/oil/rock system. Systematic laboratory research work is required to verify the synergic effect, identify favorable condi-
tions for implementation, and maximize the oil-recovery performance.

LSW has drawn increasing attention during the last 2 decades since the pioneering work of Morrow and his collaborators (Tang and
Morrow 1997, 1999). Various papers have demonstrated encouraging EOR potential in laboratory experiments, pilot tests, and field
applications (Sheng 2014; Awolayo et al. 2018; Chavan et al. 2019). The salinity of the injection water should be low enough for the
presence of the LSE, usually less than 1,500 ppm, but the LSE has been observed at salinity up to 5,000 ppm (Morrow and Buckley
2011). There is no clear boundary to define the “low” and “high” salinity. In general, the salinity of the injected brine was approxi-
mately 5 to 10% of the connate brine (Awolayo et al. 2018). Various mechanisms were proposed in the literature. No consensus is now
available on the major mechanism(s) that are responsible for the improved oil recovery during LSW flooding. The most often-discussed
mechanisms for sandstone porous media include (Sheng 2014) wettability alteration; multicomponent ion exchange; clay swelling,
fines destabilization and migration; salt-in effect; osmosis pressure; and alkaline-like flooding.

Several researchers have discussed the technical and economic benefits of combining LSW and polymer flooding. The oil used in the
published studies so far has a relatively low viscosity (<50 cp). By using LSW, one of the most direct benefits is significant reduction of
the polymer consumption. For example, Vermolen et al. (2014) reported that the required polymer concentration could be reduced by
two to four times when using LSW as the makeup brine compared with HSW. Shiran and Skauge (2013) investigated the diluted seawater
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as both secondary and tertiary in strongly water-wet and intermediate-wet outcrop Berea Sandstone cores. Also, they tested the low-
concentration polymer solution (3630S, 300 ppm, 2.6 cp) in improving oil recovery beyond the residual oil saturation established with
diluted seawater. Secondary-mode LSW showed improved oil recovery, especially in intermediate-wet cores, while tertiary-mode LSW
only showed a very marginal low-salinity benefit for intermediate-wet cores. The 300-ppm polymer flooding showed no improvement in
strong-water-wet cores after secondary or tertiary LSW flooding. An increase in oil recovery of 5% of OOIP was observed in the
intermediate-wet cores after tertiary LSW flooding, and 12 to 17% oil-recovery increase after secondary LSW flooding. Kozaki (2012)
performed several coreflood experiments to investigate the performance of LSP flooding after waterflooding in aged Berea Sandstone
cores. Beneficial recovery was observed from tertiary LSP flooding, both after limited and extensive HSW flooding.

The research reported by Eni also demonstrated the EOR potential of LSP over HSP with aged-reservoir-sandstone cores (Moghadasi
et al. 2019). Their experiments showed that LSP could achieve 8% additional oil after extensive HSP with the same viscosity. Moreover,
the LSP showed remarkable economic benefit because a much lower polymer concentration was used for LSP (300 vs. 1000 ppm).
Almansour et al. (2017) performed six coreflooding experiments with Berea and Bentheimer sandstone cores. They reported that in
intermediate-wet-sandstone cores (Berea), a tertiary LSP significantly improved the oil recovery, and the improvement was greater after
a secondary HSW flood (16.7% after HSW vs. 11.6% after LSW). However, the recovery by LSW and the ultimate recovery was much
higher (55.4 vs. 40.3%; 67.0 vs. 57%). They attributed the beneficial LSE to the release of mixed-wet fines, as supported by fines produc-
tion in effluent and the fluctuation in pressure drop during LSW flooding. The initial wettability had a significant effect on the secondary-
LSW recovery rate and efficiency, and on the incremental recovery of the tertiary LSP and the final recovery. Torrijos et al. (2018) stud-
ied the effect of the injection scheme on the oil-recovery performance of LSP. In their experiments, an obvious pH increase was observed
during the LSP flooding. The beneficial effect of LSP flooding was also reported by a very recent study (Kakati et al. 2020).

However, the reported observations were made from relatively light oils. For example, in the cases discussed previously, the oil vis-
cosity is in the range of 2.4 to 33 cp. In this study, the problems we aim to solve include the following:

• Is the hybrid EOR method of combining LSW and polymer flood effective for a 200-cp heavy oil? To what extent could the
hybrid EOR method improve the oil-recovery performance in the target heavy-oil reservoir at Milne Point Field?

• Can the LSP further reduce the residual oil saturation established after extensive waterflooding and/or extensive HSP flooding of
the same viscosity?

• What favorable flooding scheme is beneficial to maximizing the synergy effect?
• What are the possible mechanisms responsible for the EOR?
To achieve these goals, a series of coreflooding experiments were performed using representative brine/oil/core materials under vari-

ous flooding schemes. The possible mechanisms that are responsible for the synergic benefit of combining the LSW and polymer were
explored. The performance of the 2-year field pilot test in the target field was also briefly discussed.

Experimental

Brine. The compositions of formation brine and injection brine are shown in Table 1. The synthetic formation brine and synthetic
injection brine were prepared in the laboratory according to the corresponding brine compositions in Milne Point Field. The salinity of
the synthetic injection brine (2,498 ppm) was approximately 9% of the synthetic formation brine (27,500 ppm), and they are regarded as
HSW and LSW, respectively, in this paper (Sheng 2014; Awolayo et al. 2018). The ionic strengths of the HSW and LSW are 0.492 and
0.046, respectively.

Polymer. The polymer used was an acrylamide-acrylate copolymer, FlopaamVR 3630S (Pfizer Inc., New York, New York, USA). This
polymer was selected for the pilot polymer-flood project because of the availability and cost of the polymer products, and initial labora-
tory/numerical studies (Dandekar et al. 2019). The hydrolysis degree was 25 to 30% with a molecular weight of 18 to 20�106 daltons.
HSP and LSP were prepared with the HSW and LSW, respectively. Before adding the polymer powder, the brine was deoxygenated
with argon. The desired amount of polymer was slowly added into the brine while being stirred with a magnetic bar at 300 rev/min. The
solution was stirred at room temperature for approximately 24 hours until all the polymer powders were well-dissolved. The polymer
solution was filtered through 1.2-mm filter paper.

Oil. The crude oil was collected at a wellhead at Milne Point Field (Well B-28). The oil sample was centrifuged to remove water and
solids (if any) and filtered through 0.5-mm filter paper. The viscosity of the oil was 202 cp at reservoir temperature (71�F), and the �API
value was 19.0 (0.940 g/cm3). A commercial heavy mineral oil (CAS 8042-47-5) was used in one coreflooding experiment. The mineral
oil was composed of paraffin oil and had a viscosity of 173 cp, comparable with the crude oil.

Name

Properties

(Measured at 71�F)

Composition

(ppm)

HSW (SFB)

pH¼7.30 Naþ: 10086.0

l ¼ 1.15 cp Kþ: 80.2

TDS ¼ 27,500 ppm Ca2þ: 218.5

Ionic strength ¼ 0.492 Mg2þ: 281.6

Hardness: 1,700 ppm Cl�: 16834.4

LSW (SIB)

pH¼7.50 Naþ: 859.5

l ¼ 1.07 cp Kþ: 4.1

TDS ¼ 2498 ppm Ca2þ: 97.9

Ionic strength ¼ 0.046 Mg2þ: 8.7

Hardness: 280 ppm Cl�: 1527.6

Table 1—Compositions of formation brine and injection brine. SFB ¼ synthetic formation brine; SIB ¼
synthetic injection brine; TDS ¼ total dissolved solids.
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Sandpacks. Because proper core plugs were not available, sandpacks prepared with formation sand were applied to perform the core-
flooding tests. The sand was from a crushed core sample from the target reservoir formation (Schrader Bluff NB-sand) from Well
Liviano-01A at Milne Point. The formation was poorly consolidated, and the core samples were not intact to use directly for coreflood-
ing tests. The sand kept the native condition to some extent, with crude oil attached on the sand surface, as shown in Fig. 1a. The sand
was used as received to prepare the sandpacks. The sand contained 1.5% illite, 1.5% chlorite, 1% dolomite, approximately 10% albite,
and the remaining was quartz. The native-state sand and the scanning-electron-microscope image are shown in Fig. 1. The median size
of the sand was approximately 170 lm. The sandpacks were prepared using a steel tube with an inner dimension of 2.54� 20.4 cm.
A piece of stainless-steel screen was attached to the outlet end plug to prevent sand from being flushed out of the sandpack tube. A wet-
packing method was adopted to prepare the sandpacks. The sand was mixed with formation brine and set for approximately 24 hours to
remove air bubbles attached on the sand. The sand was slowly added to the sandpack tube at multiple times. A hammer was used to
knock the tube body to make sure the sand was well-packed. The pore volume (PV) and porosity were measured through tracer test.
After measuring the permeability with formation brine, crude oil was injected to establish the irreducible water saturation (Swi).

Rheology Measurement. The viscosity of injected- and produced-brine/polymer solutions was measured with a commercial viscometer
for a wide range of shear rate (0.5 to 200 seconds�1) at reservoir temperature. A commercial UL adapter system was used in the measure-
ment. The viscosity of crude oil was also measured. The SC-34 spindle-container system was adopted because of the relatively high vis-
cosity. The deviation of the measurement was within 0.1% of the viscoelasticity of the LSP and HSP. To evaluate the viscoelasticity of the
polymer solutions, a commercial rheometer was used to measure the storage modulus (G0) and loss modulus (G00) of the polymer solutions
through frequency-sweep tests (0.1 to 100 rad/s) in the linear viscoelastic regime. The polymer showed power-law behavior, as shown in
Fig. 2. As the salinity was reduced, the required polymer concentration decreased to achieve the target viscosity (45 cp). The viscosities of
the two polymer solutions were very close to each other. The concentrations of the two polymers were 2,300 and 1,400 ppm, respectively,
which indicates the HSP required 64% more polymer than the LSP to achieve the target viscosity. The polymer molecules are more likely
in a coiled state in a high-salinity environment. This is a result of the strong repulsive forces exerted by the surrounding dense ions
(Muller et al. 1979). Consequently, the viscosifying ability of the polymer molecules is suppressed. On the contrary, the polymer mole-
cules would be in a stretched status and have a greater viscosifying ability at low-salinity conditions.

pH Measurement. The pH value of the brine, polymer solutions, and aqueous phase of the effluent was measured with a pH meter
with an accuracy of 60.002 pH (Thermo Scientific Orion� 2-Star Benchtop). The pH values of the injected fresh HSW and LSW were
7.3 and 7.5, respectively. The pH values of the fresh HSP and LSP were 7.6 and 7.8, respectively.

Coreflooding Experiments. Fig. 3 shows the coreflood setup. It consists of a D-series ISCO syringe pump, accumulators, the sand-
pack assembly, pressure transducers, data-acquisition system, effluent-collection system, and tubing lines and valves. The pump could
work in constant-pressure and constant-flow-rate mode. The flow-rate accuracy was 0.001 cm3/min and the maximum operating pres-
sure was 7,500 psi. A pressure sensor was mounted to monitor the injection pressure at the inlet of the sandpack model. The accuracy of
the pressure sensor was within 60.1%. The effluent samples were collected with graduated tubes at proper frequency. The samples

(a) Formation sand in native state (b) Scanning-electron-microscope image of the sand

MS and T 4.0 kV 8.1 mm ×70 SE(M) 500 μm 

Fig. 1—Formation sand: (a) Formation sand in native state; (b) scanning-electron-microscope image of the sand.
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were examined to obtain the oil-recovery information and subject to further test of pH, salinity, and viscosity. Twelve sets of coreflood-
ing experiments were performed (Table 2). Experiments 1 and 2 were aimed at investigating LSW flooding performed in tertiary mode
and secondary mode, respectively. From these two experiments, we intended to testify whether the low-salinity brine could improve the
recovery compared with the high-salinity brine. Also, we would explore the favorable conditions in which the low-salinity benefit could
be realized [i.e., is performing the LSW flooding directly (secondary) better or is a tertiary scheme preferable?].

ISCO pump

Water Water Water Water

Pressure sensor

Recorder

Sandpack

Effluent-collection tube

PolymerSIBSFBOil

Fig. 3—Coreflooding experiment setup.

Experiment

No. Objective d (cm) L (cm) Porosity K (md) Swi Flooding Process

1 LSW in tertiary mode 2.54 20.40 0.415 1770 0.160
1. HSW flooding to Sor

2. LSW flooding to no oil production

1R1
LSW in tertiary mode

(reproducibility test)
2.54 20.40 0.453 16,205 0.103

1. HSW flooding to Sor

2. LSW flooding to no oil production

1R2
LSW in tertiary mode

(reproducibility test)
2.54 20.40 0.316 478 0.109

1. HSW flooding to Sor

2. LSW flooding to no oil production

2 LSW in secondary mode 2.54 20.40 0.453 16,205 0.112
1. LSW flooding to no oil production

2. HSW flooding to no oil production

3 HSP flooding after WF 2.54 20.40 0.415 1770 0.160
HSP flooding performed after

Experiment 1 until no oil production

3R
HSP flooding after WF

(reproducibility test)
2.54 20.40 0.453 16,205 0.112

HSP flooding performed after

Experiment 1R1 until no oil production

4 PF as secondary recovery 2.54 20.40 0.236 248 0.261 HSP flooding until no oil production

5 LSP after HSP and WF 2.54 20.40 0.415 1770 0.160
LSP flooding performed after

Experiment 3 until no oil production

5R
LSP after HSP and WF

(reproducibility test)
2.54 20.40 0.453 16,205 0.112

LSP flooding performed after

Experiment 3R until no oil production

6
LSP after secondary HSP

flooding
2.54 20.40 0.236 248 0.261

LSP flooding performed after

Experiment 4 until no oil production

7
LSP right after

waterflooding
2.54 20.40 0.316 478 0.109

LSP flooding performed after

Experiment 1R2 until no oil production

8 Effect of oil composition 2.50 30.50 0.372 4906 0.164

1. HSW flooding to Sor

2. HSP flooding to no oil production

3. LSP flooding to no oil production

Table 2—Basic information of coreflooding experiments. WF ¼ waterflood; PF ¼ polymer flood.
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After having a basic understanding of the behavior associated with the low-salinity fluid, we investigated the more complex polymer
flooding under different conditions (Experiments 3 through 8). The questions we intended to answer are the following:

• Can more oil can be recovered with conventional polymer flooding after extensive waterflooding, and to what extent? Can the
polymer reduce the residual oil saturation established with extensive waterflooding (Experiments 3 and 3R)?

• As a comparison with Experiment 3, what is the oil-recovery potential if the polymer flooding is performed earlier (without water-
flooding before polymer flood) (Experiment 4)?

• Can the LSP further reduce the residual oil saturation established with extensive HSP flooding? What about the EOR potential of
the LSP after HSP flooding with the same viscosity (Experiments 5, 5R, and 6)?

• Compared with Experiment 3, could the LSP flood achieve a better EOR performance compared with the HSP flood performed in
the same scheme? What are the possible mechanisms that are responsible for the improved recovery (Experiment 7)?

In Experiment 8, a heavy mineral oil, instead of the crude oil, was used. This experiment was intended to study the effect of the oil
property (composition) on the oil-recovery performance of LSP. The flow rate in the flooding process was set at 0.1 cm3/min (equivalent
to a Darcy velocity of approximately 1.2 ft/D). Because of the adverse mobility ratio between the displacing phase (water or polymer)
and the heavy oil, the displacement is not stable. It is difficult to reach the true residual oil saturation during a heavy-oil-recovery pro-
cess. In view of this, for each flood process, many PVs of displacing fluid were injected to drive the system to the residual-oil-saturation
condition for that fluid. During the last several PVs of injection in each flood process, no oil was produced, which confirmed the com-
pletion of the displacement. Increased flow rates were used at the end of a flooding process to check the capillary end effect.

Results and Discussion

The oil-recovery results are summarized in Table 3. The results are discussed in the following subsections.

LSW Flooding: Tertiary vs. Secondary. Experiments 1 and 2 were conducted to investigate the performance of LSW flooding per-
formed in tertiary mode and secondary mode, respectively. The tertiary LSW flooding was performed at residual oil saturation (Sor)
condition established after extensive HSW waterflooding. The results are shown in Figs. 4 through 6.

Tertiary LSW Flooding. HSW flooding was first conducted in Experiment 1 as a secondary-recovery method. The water break-
through occurred at 0.13 PV of injection and 15.2% of the OOIP was recovered. After breakthrough, the water cut quickly increased up
to 90% after 0.76 PV of injection. The water cut climbed to 99% after 2.9 PV. However, it took a long time (>15 PV) to visually reach
the no-oil-production condition (water cut¼ 100%). Several additional PVs of water were then injected to confirm that no more oil

Experiment

No.

Secondary

Flood

Secondary

Oil Recovery(%)

Sor After

Secondary Flood

Incremental Oil Recovery (%)
Endpoint

Sor

Endpoint

Recovery (%)HSW LSW HSP LSP

1 HSW 37.9 0.522 – 8.7 – – 0.449 46.6

1R1 HSW 41.4 0.526 – 3.0 – – 0.499 44.3

1R2 HSW 43.9 0.500 – 5.6 – – 0.450 49.5

2 LSW 49.4 0.482 0.4 – – – 0.479 49.9

3 HSW 37.9 0.522 – 8.7 7.4 – 0.387 53.9

3R LSW 49.4 0.482 0.4 – 7.7 – 0.417 56.3

4 HSP 71.2 0.213 – – – – 0.213 71.2

5 HSW 37.9 0.522 – 8.7 7.4 8.0 0.320 61.9

5R LSW 49.4 0.482 0.4 – 7.7 8.1 0.339 64.4

6 HSP 71.2 0.213 – – – 5.7 0.171 76.9

7 HSW 43.9 0.500 – 5.6 0.4 10.6 0.351 60.6

8 HSW 48.4 0.431 – – 13.0 0.7 0.316 62.1

Table 3—Summary of coreflooding experiment results.
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Fig. 4—Tertiary LSW flooding (Experiment 1).

DOI: 10.2118/204220-PA Date: 13-May-21 Stage: Page: 1539 Total Pages: 17

ID: jaganm Time: 14:59 I Path: S:/J###/Vol00000/200152/Comp/APPFile/SA-SPE-J###200152

June 2021 SPE Journal 1539

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/26/03/1535/2449475/spe-204220-pa.pdf by Petroleum

 R
ecovery R

esearch C
enter, R

andall Seright on 16 June 2021



could be produced. The long tail indicates that the displacement was significantly distorted from a piston-like fashion. It resulted from
the adverse mobility ratio between the injected brine and the viscous oil, which can be theoretically supported by the Buckley-Leverett
theory (Buckley and Leverett 1942; Pope 1980; Maini 1998). For heavy oil, the displacement process is highly unstable and the water
tends to finger into the oil and further develop into channels preferential to water flow between the injectors and producers, as shown in
Figs. 7c and 7d. A total of 18.7 PV of HSW was injected. The endpoint oil saturation after such extensive flooding (>10 PV) was
regarded as the residual oil saturation in this work. This might still not be the exactly true residual oil saturation because of the high vis-
cosity of the oil (Wassmuth et al. 2007). The oil recovery reached 37.9% and the Sor was 0.522. Approximately two-thirds of the recov-
ered oil were obtained after water breakthrough.

After the secondary HSW flooding, extensive PVs of LSW were injected into the core to test whether lowering the salinity could
effectively recover more oil after the HSW flooding. The water cut was obviously reduced and 8.7% of OOIP additional oil was recov-
ered. The oil-recovery factor was increased to 46.6%. The results demonstrate the positive effect of low salinity in enhancing the
heavy-oil-recovery efficiency. The results are consistent with the recent experimental work, which showed improved oil-recovery per-
formance (6.3% of OOIP) of LSW flooding (total dissolved solids¼ 3,000 ppm) over HSW flooding (total dissolved
solids¼ 28,000 ppm) for the target Milne Point heavy oil (Cheng et al. 2018).

The capillary end effect was checked according to the Rapoport and Leas (1953) scaling parameter, Lvl, which should be higher
than 3.5 cm2 �min�1 � cp (Qi 2018), where L is the length of the core (in cm); l is the viscosity of the displacing fluid (in cp); and v is
the Darcy velocity (in cm/min). The scaling parameter during waterflooding was 0.43; thus, a capillary end effect was likely. At the end
of HSW flooding and LSW flooding, the flow rate was increased to 0.2, 0.5, 1.0, and 2.0 cm3/min. No additional oil was produced at the
increased flow rates. Note that the scaling parameter at 2.0 cm3/min was 20 times higher and far greater than the critical value. The
results indicated that the end effect was negligible.

Experiments 1R1 and 1R2 were performed following the same procedure on different sandpacks (see Appendix A) to test the repro-
ducibility. The results show that LSW recovered more oil after the normal-salinity water. The improvement was quite significant, and
an oil incremental of 3.0 and 5.6% of OOIP was achieved, respectively. The oil-recovery efficiency increased from 41.4 to 44.3% for
Experiment 1R1, and from 43.9 to 49.5% for Experiment 1R2. Accordingly, the residual oil saturation was significantly reduced. The
results further confirmed the positive effect of low salinity on the oil-recovery performance.

Secondary LSW Flooding. In Experiment 2, the sandpack was directly flooded using LSW as the secondary-recovery method. The
water breakthrough occurred at 0.18 PV and 20.0% of OOIP was recovered. The breakthrough occurred later, and more oil could be
recovered compared with the secondary HSW flooding in Experiment 1. The water cut increased up to 90% after 0.96 PV of injection,
and further rose up to 99% after 4.9 PV. The production duration at the relatively lower water-cut level lasted remarkably longer than
the secondary HSW flooding. The behavior indicates that the displacement was more stable during the LSW flooding. A total of 27 PV
of LSW was injected. Compared with the secondary HSW flooding, the secondary LSW flooding achieved a higher recovery efficiency
(49.4 vs. 37.9%) and drove the core to a lower Sor (0.482 vs. 0.522). The LSW flooding could recover 8% more oil than the HSW
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flooding using the same sandpack. Tertiary HSW flooding after the LSW flooding was attempted, but no appreciable incremental oil
recovery was observed, as shown in Fig. 6. The overall oil recovery after the tertiary flooding was 49.9%, which was higher than that in
Experiment 1R1 (44.3%). Considering the breakthrough behavior and oil-recovery efficiency, the results suggest that the LSW flooding
can achieve a better performance than the HSW flooding, and the secondary LSW flooding is better than that performed in the tertiary
stage. The results are qualitatively consistent with the observations reported by Shiran and Skauge (2013). They suggested that a sec-
ondary LSW was better than a tertiary one because during the secondary HSW flooding, the residual oil was trapped in the pore-throat
structures in the swept area. The tertiary LSW tended to follow the water pathways, and thus the oil-recovery performance was not as
good as the secondary LSW. Also, the snap-off events were weakened during a secondary LSW flood. For heavy oil, because of the
unfavorable mobility ratio, the bypassed oil is expected to be significant after waterflooding. Therefore, the tertiary LSW still has a
better chance to recover additional oil compared with the cases with less-viscous oil, as in Shiran and Skauge (2013).

As shown in Fig. 5, the injection pressure during LSW flooding was higher than that during HSW flooding, and no fines production
was observed during the entire flooding process. It suggests the low-salinity fluid did not result in formation damage and ruin the injec-
tivity. Also, in the target oil field, LSW flooding had been performed before the polymer-flood pilot test (see the Field-Application
Evaluation subsection). For the polymer-flood pilot test, the polymer solution was prepared with LSW that had the same salinity as
used in the coreflooding experiments. The low salinity did not induce formation damage during the waterflooding or polymer flooding
(Ning et al. 2019). The increased injection pressure might be caused by the wettability alteration induced by the ion exchange and the
release of polar components from the pore surfaces. The relative permeability was reduced, as supported by the decreased endpoint rela-
tive permeability of water at the Sor condition.

The pH change of the produced aqueous phase in Experiments 1 and 2 was plotted in Figs. 4 and 6. As shown in Fig. 4, the pH was
stabilized at 8.0 during HSW flooding, while during the tertiary LSW flooding, the pH quickly increased from 7.9 to greater than 8.2
and gradually stabilized at 8.4, which was almost 1.0 pH unit higher than the injected value. The major pH increase synchronized well
with the incremental oil-recovery process. A similar trend was observed in Experiment 2, as shown in Fig. 6. The pH increase indicates
the presence of an LSE (RezaeiDoust et al. 2011; Shiran and Skauge 2013). The native-state reservoir sand was relatively oil-wet
because the sand had contacted the oil for millions of years (Fig. 1). At the initial stage, polar components of the crude oil were
adsorbed onto the pore surface either directly or through divalent cations. The cations acted as a bridge to attach the polar components
onto the pore surface (mainly the clay surfaces). The adsorbed oil films could not be detached from the sand surfaces by the HSW,
which was the same with the connate brine (Fig. 7a). The invasion of LSW disturbed the adsorption-equilibrium status. Ion exchange
occurred as a result of the ion-concentration gradient between the invading LSW and the in-situ brine, especially at the pore surfaces.
The hydrogen ions were adsorbed onto the surfaces and the divalent cations were released. Also, the hydroxide ions could react with
the acidic and basic components through the acid/base reaction (RezaeiDoust et al. 2011); thus, the polar components attached to the
pore surface were released. The sand surfaces become more water-wet as the polar components were detached and the oil films became
thinner (Fig. 7b). Consequently, the residual oil was mobilized and the residual oil saturation was reduced.

HSP Flooding after Waterflooding. In Experiment 3, the performance of HSP flooding was investigated after extensive HSW flood-
ing and LSW flooding. The results are shown in Fig. 8. The results show that the polymer can still improve the oil-recovery perfor-
mance even after extensive waterflooding (37 PV of HSW and LSW). The oil-recovery incremental was 7.4% of OOIP, and the oil
recovery was increased to 53.9%. In the reproducibility-test experiment (Appendix A, Fig. A-3), Experiment 3R, the incremental oil
recovery was 6.5% of OOIP, and the oil recovery was increased from 49.9 to 56.3%.

(a) Residual oil left after HSW or HSP
flooding 

(b) Residual oil mobilization induced by
low salinity effect 

HSW
or

HSP

LSW
or

LSP

Residual oil
detached

(c) Viscous fingers

Inlet Outlet

Water Oil

Inlet Outlet

(d) Swept/unswept areas

Oil

Water channel

Water

Swept area

Unswept area

Fig. 7—Residual oil mobilization induced by LSE and the development of preferential water channels. (a) Polar components attach
on the sand surface and residual oil is left after HSW or HSP flooding. (b) The residual oil is detached from the sand surface
induced by the LSE during LSW or LSP flooding. (c) The water fingers into the oil phase as a result of the adverse mobility ratio
between the water and oil phases. (d) Local heterogeneities can exacerbate the viscous fingering, and some parts would be
left unswept.
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Because of the adverse mobility ratio during waterflooding, the sweep efficiency is difficult to reach 100%. The adverse mobility
ratio would cause fingering problems (Fig. 7c), and local heterogeneity (e.g., pores with different sizes) would make the situation worse
because the water prefers to finger into larger pores. The viscous fingers gradually develop into macroscale channels that are preferen-
tial to water flow. Afterward, the water mainly transports through the channel from the inlet (injector) to the outlet (producer), as shown
in Figs. 7c and 7d. Meanwhile, the oil in smaller pores are bypassed. The core after waterflooding can be divided into two portions
(Fig. 7d): the well-swept area (mainly the larger pores) and the unswept area (mainly the smaller pores). The well-swept area is mainly
composed of many larger pores and most likely acts as preferential water pathways during waterflooding; thus, this area could be well-
swept to the residual-oil-saturation condition. The unswept area primarily consists of smaller pores that are bypassed by the
displacing fluid.

After switching to polymer flooding, the mobility-ratio condition is improved and the displacement becomes more stable. Although
the polymer is unlikely to mobilize the residual oil in the well-swept area (larger pores) according to the capillary-desaturation curve
(Lake et al. 2014; Green and Willhite 2018), the previously bypassed oil left in the unswept area (smaller pores) could be displaced
downstream by the viscous-polymer solution. Thus, additional oil could be recovered as the consequence of sweep improvement.

Eq. 1 was used to calculate the capillary number (Nca) of all of flooding processes,

Nca ¼
lwu

r
; ð1Þ

where lw is the displacing phase (HSW, LSW, HSP, or LSP) (in mPa�s or cp); u is the superficial velocity (in m/s); and r is the interfa-
cial tension between the displacing phase and the crude oil (in mN/m). The IFT was measured using a goniometer with the pendant-
drop method. The interfacial tension was in the range of 12 to 20 mN/m. The capillary number for the HSW flooding, LSW flooding,
HSP flooding, and LSP flooding was 2.46�10�7, 2.39�10�7, 12.5�10�6, and 16.0�10�6, respectively.

Secondary Polymer Flooding. In Experiment 4, the HSP flooding was performed in a secondary mode, as shown in Fig. 9. The results
indicate much better recovery performance compared with the case preflushed with water (Experiments 3 and 3R). After the secondary
polymer flooding, the oil-recovery factor was 71.2%, whereas in Experiments 3 and 3R, the oil recovery after polymer flood was 53.9
and 56.3%, respectively. The experiment indicates that performing the polymer flood earlier can achieve a significantly better oil-
recovery performance.

The results can be explained with Fig. 7. The viscous fingers could be mitigated and the breakthrough was delayed. The snap-off
events of the oil columns while transporting through the pore throats were weakened and delayed during a secondary polymer flooding
compared with waterflooding. This interpretation can be supported by the theoretical modeling work of Huh and Pope (2008). In a sec-
ondary polymer flood, the oil is in a continuous state and can be displaced downstream more uniformly. The oil columns are more
stable and the breakage into small oil drops and/or ganglia can be effectively delayed. The elasticity can make the oil columns become
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Fig. 8—HSP flooding after waterflooding (Experiment 3).
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thinner before breakage. Most of the pore space could be well-swept, and the unswept area could be minimized. Higher oil recovery
could be achieved at the breakthrough. In Experiment 4, the polymer solution broke through at 0.25 PV, which was significantly later
than that in waterflooding. Also, the oil recovery at the breakthrough was approximately 27%, which was nearly double of the HSW
flooding in Experiment 1. The water cut increased to 90% at 1.74 PV of injection and the oil recovery was 62%, indicating more stable
displacement and better timing benefit of the earlier implementation of polymer flooding.

If the core has been flooded with water (e.g., in Experiment 3), the oil left in the well-swept area would be present as isolated drops
or ganglia, which can be trapped by capillary forces and are difficult to mobilize. The mobilization of residual oil in such fashion
requires a high capillary number that is greater than a certain critical point, usually on the order of 10�5 (Green and Willhite 2018).
However, the capillary number for a normal waterflooding is usually on the order of 10�7. According to the capillary-desaturation
curve, the capillary number must be increased by several orders of magnitudes after a normal waterflood to mobilize the residual oil
and improve the displacement efficiency (Lake et al. 2014; Green and Willhite 2018). A polymer flood is insufficient to provide such a
significant increase.

LSP Flooding after Waterflooding and HSP Flooding. In Experiment 5, the performance of LSP flooding was investigated after
extensive waterflooding and HSP flooding, as shown in Fig. 10. Strikingly, even after extensive flooding with HSP, significant incre-
mental oil was achieved when injecting LSP. Although the viscosity was nearly the same with the HSP and the concentration was sig-
nificantly lower, the oil-recovery incremental was remarkable (8.0% of OOIP) and the overall oil-recovery factor reached 61.9%. The
reproducibility was tested in Experiment 5R, and additional oil of 8.1% of OOIP was achieved and the oil recovery was increased to
64.4%. The pH was increased during the LSP flooding, especially at the early stage, which synchronized well with the incremental oil
recovery. The pH increase indicates that ion exchange took place during the flooding process (RezaeiDoust et al. 2011). Inductively
coupled plasma analysis could directly give the information of the ion change in the effluent. However, because the samples contained
polymer and were highly viscous, the inductively coupled plasma test was not performed. Note that the core had already been exposed
to the low-salinity invading fluid during the flooding process with LSW, as shown in Fig. 10. The LSE (e.g., ion exchange, polar-
component desorption, and wettability alteration) had already taken effect in the pores that were swept by the LSW (the well-swept
area in Fig. 7d). However, there was still an appreciable portion of oil left in the unswept area after the LSW flooding. Although the
sweep efficiency was increased and additional oil could be displaced out during the HSP flooding (7.4% of OOIP), still the residual oil
saturation could be reduced by the LSE in the area previously untouched by the LSW (Figs. 7b and 7d). As shown in Fig. 10, incremen-
tal oil recovery was achieved during the following LSP flooding. The results demonstrate the synergic effect of LSW and polymer
flooding in enhancing the heavy-oil recovery.

To evaluate the mechanical stability as the polymer solutions transport through the sandpacks, we monitored the viscosity of the
aqueous effluent during the LSP flooding and HSP flooding. The aqueous phase was obtained by centrifuging the polymer/oil-mixture
effluent. Fig. 11 shows the relative viscosity of the effluent vs. the injected PVs of the HSP and LSP in Experiment 5. The low value at
the beginning is caused by the displacement of water present in the porous media. We observed that the LSP could almost reach the
injected value, and the mechanical degradation was negligible. For the HSP, the effluent reached 90% of the injected value after several
PVs of injection. This indicates that the HSP went through some mechanical degradation, which was probably caused by the coiled con-
figuration of the polymer molecules.

LSP Flooding after a Secondary HSP Flooding. In Experiment 6, the LSP flooding was performed after the secondary polymer flood
in Experiment 4. The results are shown in Fig. 12. The incremental oil recovery was 5.7% of OOIP. The overall oil recovery was
increased to 76.9% after the LSP flooding. The residual oil saturation was reduced from 0.21 to 0.17. The pH of the effluent was
increased during the LSP flooding This phenomenon indicated the presence of the LSE, which would contribute to the improved oil
recovery. Further discussions of the results are presented in the subsection LSP Flooding Directly after Waterflooding.

LSP Flooding Directly after Waterflooding. In Experiment 7, the LSP flooding was performed after extensive waterflooding (includ-
ing HSW flooding and LSW flooding). The results are shown in Fig. 13. The oil-recovery factor reached 60.1% after the LSP flooding,
and an 10.6% of additional oil was recovered in this process. The incremental recovery was higher than the LSP flooding after extensive
waterflooding and HSP flooding (Experiments 5 and 5R) and was nearly double that after secondary HSP flooding (Experiment 6). The
LSP flooding performed in this scheme was also better than the HSP flooding, as observed in Experiments 3 and 3R, in which the incre-
mental recovery of HSP flooding after extensive waterflooding was 7.4 and 6.5% of OOIP, respectively. Some researchers reported con-
siderable incremental oil recovery and Sor reduction in a high-salinity polymer flood after an LSP flood (Qi et al. 2017; Erincik et al.
2018). Their impressive observations might be related to the viscoelasticity effect of the polymer solution present at high-shear-rate
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Fig. 10—LSP flooding after waterflooding and HSP flooding (Experiment 5).
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condition. It might also be caused by other specialized conditions associated with their experiments (e.g., core conditioning). Our
experiments performed at normal flow velocity, as in the reservoir (approximately 1.2 ft/D); however, no appreciable incremental
recovery was observed in the HSP flooding after the LSP flooding, indicating that the injection scheme has an important effect on the
oil-recovery performance.

The Sor reduction induced by the LSE should be responsible for the improved oil-recovery efficiency during the LSP flooding after
secondary HSP flooding (Experiment 6). The sweep efficiency in the secondary HSP flooding was higher than that in the HSW flooding
and LSW flooding in Experiment 7. Thus, most of the pore space in the core was well-swept. Further improvement in sweep is expected
to be minimal in the following LSP flooding because of the similar viscosity of the two polymer solutions. The incremental recovery
was not as significant as the case of LSP flooding after waterflooding (Experiment 7). In the latter case, there was still a considerable
portion in the core that was unswept after the waterflooding (mainly the smaller pores). The LSP had a better chance to achieve addi-
tional oil recovery through both sweep improvement and Sor reduction induced by the low-salinity effect in the unswept area (Fig. 7).
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By contrast, the low-salinity-induced reduction mechanism for Sor was absent in the HSP flooding (Experiments 3 and 3R); thus, the
oil-recovery improvement was not as significant as the LSP flooding in Experiment 7. Note that the sandpack had already been flooded
with LSW. Further reduction of the Sor was unlikely in the well-swept area (mainly the larger pores). Also, the oil-thread/column-
stabilization effect was favorable for the polymer to establish a lower residual oil saturation because the oil saturation in the unswept area
was higher than the Sor after extensive waterflooding. The mechanism was similar to a secondary polymer flood (Huh and Pope 2008).

Some researchers attribute the reduction in residual oil saturation to the viscoelasticity of the polymer solution (Wang et al. 2000;
Koh et al. 2018; Qi 2018; Azad and Trivedi 2020). But viscoelasticity is only significant at a high-shear-rate condition, as indicated by
the shear-thickening effect at high flux (Seright 2011; Seright et al. 2011). The linking between the viscoelasticity property and the Sor

reduction has not been well-understood so far. Also, it is challenging to quantify the representative viscoelasticity property of the poly-
mer solutions in porous media. Some reviews and experimental work have been reported recently (Azad and Trivedi 2019a, 2019b,
2020; Jouenne and Heurteux 2020). We conducted rheology tests to evaluate the viscoelasticity of the LSP and HSP. Frequency-sweep
tests (0.1 to 100 rad/s) were performed to measure the storage modulus (G0) and loss modulus (G00) with a rheometer in the linear visco-
elastic regime. The measured G0 and G00 of the LSP and HSP are shown in Figs. 14 and 15, respectively. The relaxation times of the
polymer solutions were determined with the crossover-point method described in Delshad et al. (2008). The relaxation time for the LSP
was 0.633 seconds, which was approximately eight times that of the HSP (0.084 seconds). The result is consistent with the theoretical
and experimental results of polymer solutions prepared with 0.1 and 1% sodium chloride reported by Delshad et al. (2008) and Yuan
(1981). However, more work is required to clarify the role of the viscoelasticity property in the improved oil recovery and reduced
residual oil saturation during the LSP flooding performed at relatively low-velocity conditions.

Nevertheless, the results clearly demonstrate that the combination of LSW and polymer flooding can significantly improve the oil-
recovery performance. The residual resistance factors (the ratio of water-injection pressure after and before the polymer flooding) of
both LSP and HSP were less than 1.5, indicating that injectivity loss and formation damage were not a concern during the
polymer flooding.

Field-Application Evaluation. The idea of combining LSW and polymer flooding has been put into practice on a pattern-scale pilot
test in Milne Point Field on the ANS. The flood pattern consists of two horizontal injection wells and two horizontal producers. Detailed
field practice can be found in Dandekar et al. (2019, 2020) and Ning et al. (2019).

The pilot test has been going on for nearly 2 years and the field performance up to the writing of this paper (May 2020) has prelimi-
narily demonstrated the game-changing potential of LSP flood in unlocking the enormous heavy-oil resources in the ANS. The pilot
test has shown impressive successful responses (Figs. 16 and 17): The injectivity is sufficient to replace the production voidage; the
water cut reduced from 70% at the start of LSP flooding to less than 15%; and there is no polymer breakthrough so far. Figs. 16 and 17
also show that the oil rate has reversed the decline trend (as is expected during waterflood) and started to increase because of the
injected polymer. Detailed field performance and benefit analysis will be presented in future publications.
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Discussion of Influencing Factors on the Effectiveness of LSP Flooding. According to our knowledge, the general working condi-
tions required for the LSW should also be satisfied to make the LSP effective. These working conditions have been widely discussed in
the literature, including the following:

• The presence of polar components in the crude oil
• The presence of clay in the rock, especially kaolinite
• The presence of connate water (with relatively high salinity)
• The presence of a remarkable amount of divalent ions (Ca2þ, Mg2þ) in connate water
• The low-salinity injection water
• Relatively low pH values (6 to 7) of the connate brine to allow the adsorption of polar components onto the clay surface (Sheng 2014)

This indicates that the effectiveness of the LSP is governed by multiple factors.
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To demonstrate the influence of the oil properties, we performed experiments with heavy mineral oil instead of the crude oil
(Fig. 18). The viscosity of the mineral oil (173 cp) was comparable with the crude oil (202 cp). Note that LSW flooding was not per-
formed before the LSP flooding. In this circumstance, the LSE during the LSP flooding was expected to be more prominent. However,
the results show that no appreciable incremental oil was achieved by the LSP flooding (only 0.73% of OOIP) after extensive HSP flood-
ing. The mineral oil was composed of paraffin oil and contained no polar components. The coreflooding results indicate that the compo-
sition of the oil is an important influencing factor on the effectiveness of LSP flooding.

As for the viscosity of the oil, we consider whether the effectiveness of LSP is selective to heavy or light oil. Several researchers
have reported the effectiveness of LSP after limited/extensive waterflooding using crude oil with a lower viscosity (2.4 to 33 cp), as dis-
cussed in the Introduction. Kozaki (2012) observed improved oil-recovery performance during LSP flooding after extensive waterflood-
ing. In his experiment, 8% more oil was achieved during LSP flooding after extensive waterflooding using cores of aged Berea
Sandstone. Shiran and Skauge (2013) reported 5% oil-recovery increase in LSP flooding after tertiary LSW flooding, and 12 to 17%
after secondary LSW flooding in intermediate-wet Berea Sandstone cores. The effectiveness of LSP after extensive HSP with the same
viscosity was also reported in the literature (lo ¼ 25 to 32 cp; lp � 4 cp) (Moghadasi et al. 2019). Their experiments showed that LSP
could achieve 8% additional oil after extensive HSP with the same viscosity. Our observations with heavy oil showed agreement with
the reported results. Our work demonstrates that the efficiency of LSP is not unique to light oil, but it also can be achieved with
heavy oil.

It is interesting to know whether the salinity of the LSW/LSP used in the laboratory work of this study and the pilot test is the opti-
mum. Technical and economic considerations should be taken into account in determining the optimal salinity. The salinity of the read-
ily available LSW source in the target field is approximately 2,500 ppm. This is the lowest-possible salinity that available without any
further expensive desalination process. Further reducing the salinity requires additional facilities and is technically difficult in the
Arctic area. It is possible to obtain medium salinities that are between the formation salinity and source-brine salinity by mixing the pro-
duced water with the injection-source brine. However, the problem is that a higher polymer concentration is required to achieve the
target viscosity as the salinity is increased. Also, the LSP shows a better mechanical stability, as indicated in Fig. 11. The operation at
this lowest-possible salinity shows no injectivity problem in the experiments or the field practice. Therefore, from the technical and eco-
nomic point of view, the salinity used in this paper is the optimal salinity for the given heavy-oil/brine/rock system.

In this work, we only tested the 3630S polymer, as used in the field pilot test. The choice of this polymer was initially determined by
numerical simulation, the availability, and cost of the polymer products (Dandekar et al. 2019). Our project team has investigated the
retention behavior of Flopaam 3430S, which has a lower molecular weight of 10 to 12�106 daltons (Wang et al. 2020). In the near
future, we will systematically study the rheological behavior and oil-recovery performance of different polymers.

Conclusions

We draw the following conclusions from the experimental results:
1. The HSP requires nearly two-thirds more polymer than the LSP to achieve the same target viscosity in this study.
2. Additional oil can be recovered from LSW flooding after extensive HSW flooding (3 to 9% of OOIP). LSW flooding performed in

secondary mode can achieve a higher recovery than that in tertiary mode. Also, the occurrence of water breakthrough can be delayed
in the LSW flooding compared with the HSW flooding.

3. After extensive LSW flooding and HSP flooding, incremental oil recovery (approximately 8% of OOIP) can still be achieved by LSP
flooding with the same viscosity as the HSP. The pH increase of the effluent during LSW/LSP flooding is significantly greater than
that during HSW/HSP flooding, indicating the presence of the LSE. The reduction in residual oil saturation (Sor) induced by the LSE
in the area unswept during the LSW flooding would contribute to the increased oil recovery.

4. LSP flooding performed directly after waterflooding can achieve more incremental oil recovery (approximately 10% of OOIP). The
improved sweep efficiency by polymer and the low-salinity-induced Sor reduction in the unswept area would contribute to the
increased oil recovery.

5. The synergy of combining LSW and polymer flooding has been demonstrated under various conditions in this study. Field-
application practice has demonstrated remarkable success regarding water-cut reduction, oil-production improvement, and delayed
breakthrough behavior. Future work is required to further investigate the rheology behavior under reservoir conditions, polymer
retention, in-situ emulsification, and the impact of wettability at varying salinity conditions.
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Nomenclature

Nca ¼ capillary number, dimensionless
Sor ¼ residual oil saturation, dimensionless
Swi ¼ initial water saturation, dimensionless

u ¼ superficial velocity, m/s
lw ¼ viscosity of the displacing phase (HSW, LSW, HSP, or LSP), mPa�s or cp
r ¼ interfacial tension between the displacing phase and the crude oil, mN/m
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Appendix A—Experimental Results of Reproducibility Tests

The results of Experiments 1R1, 1R2, 3R, and 5R, as well as the injection pressure, are shown in Figs. A-1 through A-5.
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Fig. A-1—Tertiary LSW flooding (Experiment 1R1).

DOI: 10.2118/204220-PA Date: 13-May-21 Stage: Page: 1549 Total Pages: 17

ID: jaganm Time: 15:00 I Path: S:/J###/Vol00000/200152/Comp/APPFile/SA-SPE-J###200152

June 2021 SPE Journal 1549

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/26/03/1535/2449475/spe-204220-pa.pdf by Petroleum

 R
ecovery R

esearch C
enter, R

andall Seright on 16 June 2021

https://doi.org/10.2118/98-04-06
https://doi.org/10.2118/98-04-06
https://doi.org/10.2118/129421-JPT
https://doi.org/10.2118/129421-JPT
https://doi.org/10.1002/pol.1979.170170305
https://doi.org/10.15530/urtec-2019-643
https://doi.org/10.2118/7660-PA
https://doi.org/10.2118/7660-PA
https://doi.org/10.2118/179689-PA
https://doi.org/10.2118/213-G
https://doi.org/10.1021/ef200215y
https://doi.org/10.1016/j.petrol.2016.01.023
https://doi.org/10.2118/129200-PA
https://doi.org/10.2118/129200-PA
https://doi.org/10.1016/j.petrol.2014.05.026
https://doi.org/10.1021/ef301538e
https://doi.org/10.1007/s12182-020-00461-x
https://doi.org/10.2118/36680-PA
https://doi.org/10.2118/36680-PA
https://doi.org/10.1016/S0920-4105(99)00034-0
https://doi.org/10.1016/j.petrol.2018.01.031
https://doi.org/10.2523/IPTC-17342-MS
https://doi.org/10.2118/63227-MS
https://doi.org/10.2118/200428-PA
https://doi.org/10.2118/2007-182


0

1

2

3

4

5

0 10 20 30 40 50 60 70

In
je

ct
io

n 
P

re
ss

ur
e 

(p
si

)

Injection PV

LSWHSW HSP LSP

Fig. A-5—Injection pressure in Experiments 1, 3, and 5.
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SI Metric Conversion Factors

ft�3.048* E�01 ¼m

md�9.869233 E�04 ¼ mm2

psi�6.8948 E�03 ¼MPa

*Conversion factor is exact.
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