The appearance of US 6,905,504 on June 14, 2005, "Method of Converting Feed Water to Fresh Water," marked a special occasion at the PRRC, representing the culmination of several years of research and study by Dr. Joseph J. Taber, PRRC Director Emeritus. The process claimed by this patent uses existing water pressures and high flow rates of waterfloods to produce fresh water by reverse osmosis, for minimal operating costs and with no disposal problems. With this process, operators could adapt off-the-shelf RO units for immediate application in their waterfloods, as shown in the embodiment represented by Fig. 2 (above).

Instead of simply publishing his findings, the patent was sought, says Dr. Taber, because "a patent seems to lend a certain credibility that publishing a paper in a journal doesn’t." He has been interested in RO for many years—while lecturing on CO₂ flooding (he is an expert in this field) he thought of water under pressure in oilfield waterfloods: why not use the existing pressures in the brackish/salty waters for RO processes? "Once I started looking at this," he says, "I realized there were two other significant benefits. First, you could employ the high flow rates often found in waterfloods to sweep the membranes clear of the salts that normally accumu- late there. Second, this new method would get rid of all the usual waste disposal problems that are almost always a part of RO systems." All reject water is injected to recover oil.

From concept to patent took about 10 years, although Dr. Taber was not engaged in patent research during all that time. This is his ninth patent—and the first to bear his name alone as the inventor. Dr. Taber calls it, "the most difficult of my patents." (The rest were filed while he was working for Gulf Oil). "The first ones were easier, not just that I was much younger, but because many people at Gulf provided advice and assistance—especially Gulf’s patent lawyers, who did all the application work. Perhaps," he adds, "patent examiners have made life more difficult in the last 40 years, because in this case, we had to answer many more objections raised by the patent examiner."

Although this patent could have ramifications for waste disposal, Dr. Taber’s future plans do not include any new patents that are in the works right now. He wants to get back to writing his book, whose working title, he says, is Injecting the Right Stuff for Maximum Oil Recovery.

The patent may be obtained by anyone from the U.S. Patent Office website at http://www.uspto.gov/. Dr. Taber welcomes questions or comments on this useful research that he has pursued into the sixth decade of his scientific career. He may be contacted through the PRRC’s Publications Office, 505-835-5406, or lizb@prrc.nmt.edu.
NM WAIDS Now Online at PRRC

The New Mexico Water and Infrastructure Data System (NM WAIDS) is now online at http://octane.nmt.edu/waterquality/. This DOE-funded project, completed May 2005, aims to alleviate a number of produced water-related issues in southeast New Mexico. The concept for the project was generated by discussions with New Mexico oil and gas producers that revealed a number of water-related problems and issues that they had to deal with daily.

The Industrial Services and Outreach Group (ISOG) of the PRRC, led by PI Martha Cather, designed and implemented a Geographical Information System (GIS) and integral tools to provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions.

NM WAIDS has already become a research tool for first-look assessments of where various methods might be most appropriately applied. Partly as a result of the availability of this data, a number of companies have become quite active pursuing more beneficial and environmentally-sound methods of using produced water.

The NM WAIDS site offers:
- A water quality database containing over 7000 entries of produced water chemistry and 30,000 entries of groundwater data, including formations, depths, and chloride/total dissolved solids (TDS) for New Mexico for produced water analyses from a variety of sources.
- A web site allowing users access to this data via both text- and map-based queries, using a GIS database and map server to integrate and display data from several sources. The web interface also allows users to move between this web site and other GO-TECH web sites devoted to production data and state land information.
- An easy-to-use, web-based scale prediction tool that can run from user input data. The user can also select samples from the water analysis database and input the data into the tool.

Efforts continue to collect produced water quality information from operators in southeast New Mexico. Other ongoing project activities include corrosion education in the region through operator visits, compilation of both hard copy and online corrosion toolkit material, improvement of the integrated web and GIS interface for all the information collected (including data from northwest New Mexico), and the continued development of a fuzzy logic spill risk assessment tool (FRAT) that was initially developed prior to this project.

A CD for NM WAIDS, containing the databases, a GIS viewer, and instructions for use, is also available for $40.00 from the PRRC Publications Office (835-5406, or email lizb@prrc.nmt.edu).

Production Data: Collecting It and Using It!—Midland, March 1 and Farmington, March 17

This joint workshop with Texas PTTC featured survey results of the methods being currently used by more than 30 operators to capture field production data. Other presentations included an overview of production accounting software; digital technology to capture production data; and new technologies to optimize well and field production data.

Horizontal Drilling: Updates on the Permian Basin—Midland, May 12

Another joint workshop with Texas PTTC Region drew more than 100 attendees. The workshop featured case studies and updates of several Permian Basin fields, horizontal drilling in the Texas Permian Basin, horizontal well stimulation, and a horizontal waterflood pilot in Oklahoma.

Hydraulic Fracturing: Measurement, Characterization and Analysis—Farmington, June 21

Dr. Jennifer Miskimins of the Colorado School of Mines presented this workshop, which covered recent advances in hydraulic fracturing techniques and how to use them to characterize the producing reservoir. The basics of hydraulic fracturing and the complexities of treatment design and analysis were covered in this one-day workshop. Special issues such as non-Darcy flow, G-function analysis, and “mapping” techniques were also reviewed, and case studies were presented.

NOTE: Proceedings CDs for the Horizontal Drilling workshop and Frac workshop workbooks are still available: call 505-835-5406 or email lizb@prrc.nmt.edu

Entry page for the NM WAIDS website, which offers tools and data to help operators with regulatory and management decisions.
Publications, Presentations

Don’t Miss This September Workshop

Coming up: “Introduction to Mining the Internet: Using Free GIS Data and Low Cost Software for the Oil & Gas Professional,” Sep 13, Midland and Sep. 15, Farmington. See the GO-TECH website at www.octane.edu for details and a link to online registration, or call Sigrid Klift at 512-471-0320.

CO₂ Phase II Project Awarded, Starts in October

In June, the US DOE announced the award of “SW Regional Partnership for Carbon Sequestration, Phase II,” to New Mexico Tech. Dr. Brian McPherson, head of the PRRC CO₂ Sequestration Group, is PI for this $17.8 million, four-year project, of which $2.3 will go to NMT as the lead organization. Partners represent a variety of energy-related entities in six states. Industry partners include KinderMorgan, Burlington, and Resolute Natural Resources. Phase II will perform validation tests of the most promising sequestration technologies for the Southwest Region, including three geologic pilot tests and two terrestrial pilot test programs.
The PRRC is a state-supported center that conducts research designed to improve methods of recovering crude oil and natural gas and that transfers petroleum technology to domestic oil producers. Funding for the PRRC comes from three sources: the State of New Mexico, the federal government (Department of Energy), and private industry.

New Mexico Institute of Mining and Technology
Daniel H. López, President

Board of Regents
Ex Officio
Bill Richardson, Governor of New Mexico
Dr. Beverlee McClure, Secretary of Higher Education

Appointed
Ann Murphy Daily, President, Santa Fe
Jerry A. Armijo, Socorro
Richard N. Carpenter, Santa Fe
Sidney M. Gutierrez, Albuquerque
Michaella Gorospe, Socorro

Petroleum Recovery Research Center
Robert Lee, Director

Administrative Staff
Alan A. Reisinger, Assistant Director for Administrative Services
Brenda Parson, Contracts Assistant
Geri Waggoner, Administrative Coordinator
Torrie Bustamante, SHS Student Intern, newsletter

Senior Staff
Jill S. Buckley, Senior Scientist
Martha Cather, Industrial Technology Coordinator
Reid B. Grigg, Senior Engineer
Randall S. Seright, Senior Engineer
Robert Balch, Senior Scientist

PRRC Publications Office
Liz Bustamante, Editor

This newsletter is produced by the PRRC Publications Office. Views expressed are those of the PRRC staff. Submissions and letters to the editor are welcome. Reprints from the PRRC Review are permitted, provided that credit is given to the New Mexico PRRC. Please send two copies of the publication containing the reprint to Liz Bustamante, PRRC, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801. PHONE: (505) 835-5406. FAX (505) 835-6031. EMAIL: lizb@prrc.nmt.edu. WEBSITE: http://baervan.nmt.edu

Ten largest injection and production wells in NM

Locations of salt water disposal wells in NM

NM PRODUCED WATER FACTS FROM GO-TECH